Acknowledgements
Financial support from the Innovation Fund for Elitists of
Henan Province, China (No. 0221001200) is acknowledged.
References
1
H. Zhang, J. M. Sun, D. Ma, X. H. Bao, A. Klein-Hoffmann, G.
Weinberg, D. S. Su and R. Schl o¨ gl, J. Am. Chem. Soc., 2004, 126,
7
440–7441.
S. Y. Chen, Y. T. Chen, J. J. Lee and S. Chen, J. Mater. Chem., 2011,
1, 5693–5703.
L. Chen, Y. M. Wang and M. Y. He, J. Porous Mater., 2011, 18,
11–216.
2
3
2
2
4
5
G. X. Zhu and Z. Xu, J. Am. Chem. Soc., 2011, 133, 148–157.
G. X. Zhu, S. G. Zhuang, Z. Xu, J. Ma and X. P. Shen, J. Am. Chem.
Soc., 2011, 133, 15605–15612.
6
7
8
9
S. Ching, D. A. Kriz, K. M. Luthy, E. C. Njagi and S. L. Suib, Chem.
Commun., 2011, 47, 8286–8288.
X. M. Wu, P. L. Redmond, H. T. Liu, Y. H. Chen, M. Steigerwald and
L. Brus, J. Am. Chem. Soc., 2008, 130, 9500–9506.
Y. H. Chen, H. H. Hung and M. H. Huang, J. Am. Chem. Soc., 2009,
131, 9114–9121.
Q. A. Zhang, W. Y. Li, C. Moran, J. Zeng, J. Y. Chen, L. P. Wen and
Y. N. Xia, J. Am. Chem. Soc., 2010, 132, 11372–11378.
Fig. 4 (a) The catalytic performances of the ZSM-5 catalysts in the
hydration of cyclohexene to cyclohexanol, (b) the stability properties in a
long running time of up to 1000 h, (c) the transmittance of the reaction
mixture with the ZSM-5 particles in the sedimentation process, and (d) the
photo images of the sedimentation process in the reaction mixture with the
ZSM-5 MPs and ZSM-5 SMPs.
1
0 K. Moller, B. Yilmaz, R. M. Jacubinas, U. Muller and T. Bein,
J. Am. Chem. Soc., 2011, 133, 5284–5295.
1 A. S. Huang and J. Caro, Chem. Commun., 2011, 47, 4201–4203.
2 M. Saruyama, M. Kanehara and T. Teranishi, Chem. Commun., 2009,
724–2726.
1
1
It is noteworthy that the ZSM-5 MPs exhibit a distinctively
improved sedimentation separation performance compared to
the ZSM-5 SMPs (Fig. 4c, d). The clear difference in the
transmittance of the aqueous reaction mixture shows that the
ZSM-5 MPs can be more easily separated from the reaction
mixtures than their sub-microscale counterparts, which can be
observed from the photo images (Fig. 4c, d). This superior
sedimentation performance of the ZSM-5 MPs will be of
great benefit in industrial applications.
2
13 Y. P. Xu, Z. J. Tian, S. J. Wang, Y. Hu, L. Wang, B. C. Wang, Y. C. Ma,
J. Y. Yu and L. W. Lin, Angew. Chem., Int. Ed., 2006, 45, 3965–3970.
14 L. Wang, Y. P. Wu, Y. Wei, J. C. Duan, A. B. Chen, B. C. Wang, H. J.
Ma, Z. J. Tian and L. W. lin, J. Am. Chem. Soc., 2006, 128, 7432–7433.
5 G. Majano, A. Darwiche, S. Mintova and V. Valtchev, Ind. Eng. Chem.
Res., 2009, 48, 7084–7091.
1
1
1
1
1
2
2
2
6 Asahi chemical industry Co., Ltd., JP Pat. 60104031A, 1985.
7 M. Tojo and Y. Fukuoka, JP Pat. 61180735A, 1986.
8 M. Tojo and Y. Fukuoka, JP Pat. 61234945A, 1986.
9 Y. Kunihiko, O. Hideaki and K. Tadashi, US5302762A, 1994.
0 S. Ono and M. Iwasaki, US5767328A, 1998.
1 O. Mitsui and Y. Fukuoka, US4588846A, 1986.
2 D. Z. Wang, X. T. Shu and M. Y. He, Chinese J. Catal., 2002, 23,
03–506.
3 N. Y. Kang, B. S. Song, C. W. Lee, W. C. Choi, K. B. Yoon and Y. K.
Park, Microporous Mesoporous Mater., 2009, 118, 361–372.
4
. Conclusions
In conclusion, a simple and scalable crystal seed growth
approach was developed to synthesize ZSM-5 MPs, without
an organic template, for the catalytic hydration of cyclohex-
ene to cyclohexanol. Due to the use of crystal seeds, the as-
synthesized ZSM-5 MPs exhibited a good crystalline degree
and possess larger sizes, with an average diameter up to
5
2
24 L. Zhang, C. G. Yang, X. J. Meng, B. Xie, L. Wang, L. M. Ren, S. J.
Ma and F. S. Xiao, Chem. Mater., 2010, 22, 3099–3107.
5 C. Y. Hsu, A. S. T. Chiang, R. Selvin and R. W. Thompson, J. Phys.
2
Chem. B, 2005, 109, 18804–18814.
26 Y. Q. Song, X. X. Zhu, Y. Song, Q. X. Wang and L. Y. Xu, Appl.
Catal., A, 2006, 302, 69–77.
8
.78 mm, than that of commercial ZSM-5 SMPs. As catalysts
for the hydration of cyclohexene, the catalytic performance of
the ZSM-5 MPs has been investigated in a long running
experiment of up to 1000 h, with a high conversion of
cyclohexene, high selectivity of cyclohexanol, and excellent
stability. The main advantage of the ZSM-5 MPs is the
significantly improved sedimentation separation performance
compared to that of the ZSM-5 SMPs. These improvements
in the catalytic performance of the ZSM-5 MPs show its wide
potential application as an alternative for ZSM-5 SMPs.
Work in this direction is currently under way in our
laboratory.
2
7 L. J. Jin, X. J. Zhou, H. H. Quan and B. Ma, Catal. Commun., 2008, 10,
36–340.
8 M. Yurdakoc, M. Akcay, Y. Tonbul and K. Yurdakoc, Turk J. Chem.,
1999, 23, 319–327.
9 W. L. Xie and H. T. Li, J. Mol. Catal. A: Chem., 2006, 255, 1–9.
0 H. Ishida, Catal. Surv. Jpn., 1997, 1, 241–246.
3
2
2
3
3
1 H. Ogawa, X. H. Hao and T. Chihara, Catal. Lett., 1998, 55, 121–123.
32 H. Zhang, S. M. Mahajani, M. M. Sharma and T. Sridhar, Chem. Eng.
Sci., 2002, 57, 315–322.
3
3
3 M. Jojo and Y. Fukuoka, JP61234945A, 1986.
4 F. Steyer, H. Freund and K. Sundmacher, Ind. Eng. Chem. Res., 2008,
7, 9581–9587.
35 D. Z. Wang, X. T. Shu and M. Y. He, CN1257840C, 2006.
4
This journal is ß The Royal Society of Chemistry 2012
CrystEngComm, 2012, 14, 3854–3857 | 3857