C O M M U N I C A T I O N S
Table 2. Cr[VI] Mediated C-H Oxidation
Scheme 2
Scheme 3
(2) Pettit, G. R.; Tan, R.; Xu, J.-P.; Ichihara, Y.; Williams, M. D.; Boyd, M.
R. J. Nat. Prod. 1998, 61, 953 and references therein.
(3) Fukuzawa, S.; Matsunaga, S.; Fusetani, N. J. Org. Chem. 1997, 62, 4484
and references therein.
(4) Arnone, A.; Cavicchioli, M.; Montanari, V.; Resnati, G. J. Org. Chem.
1994, 59, 5511.
(5) Kojima, T.; Matsuo, H.; Matsuda, Y. Inorg. Chim. Acta 2000, 300, 661.
Barton, D. H. R. Chem. Soc. ReV. 1996, 237. Perkins, M. J. Chem. Soc.
ReV. 1996, 229.
(6) Denmark, S. E.; Wu, Z. Synlett 1999, 847. Curci, R.; Dinoi, A.; Rubino,
M. F. Pure Appl. Chem. 1995, 67, 811. Adam, W.; Curci, R.; Edwards,
J. O. Acc. Chem. Res. 1989, 22, 205. Murray, R. W. Chem. ReV. 1989,
89, 1187.
(7) Dickman, M. H.; Pope, M. T. Chem. ReV. 1994, 94, 569.
(8) Shilov, A. E.; Shul’pin, G. B. Chem. ReV. 1997, 97, 2879.
(9) Di Valentin, C.; Gisdakis, P.; Yudanov, I. V.; Ro¨sch, N. J. Org. Chem.
2000, 65, 2996.
(10) Complexes of Cr(O2)O2L (L ) tridentate amine ligands) are reported to
be essentially inert as oxidants: Tarafder, M. T. H.; Bhattacharjee, P.;
Sarkar, A. K. Polyhedron 1992, 11, 795.
(11) Shul’pin, G. B.; Su¨ss-Fink, G.; Shul’pina, L. S. J. Chem. Res. 2000, 576.
Muzart, J. Chem. ReV. 1992, 92, 113. Parish, E. J.; Aksara, N.; Boos, T.
L.; Kaneshiro, E. S. J. Chem. Res., Synop. 1999, 708. Samsel, E. G.;
Srinivasan, K.; Kochi, J. K. J. Am. Chem. Soc. 1985, 107, 7606. Parish,
E. J.; Aksara, N.; Boos, T. L. Lipids 1997, 32, 1325. Kunkely, H.; Vogler,
A. Inorg. Chim. Acta 1997, 256, 169.
(12) Shul’pin, G. B.; Su¨ss-Fink, G.; Shul’pina, L. S. J. Chem. Res. 2000, 576.
Curci, R.; Giannattasio, S.; Sciacovelli, O.; Troisi, L. Tetrahedron 1984,
40, 2763. Ciminale, F.; Camporeale, M.; Mello, R.; Troisi, L.; Curci, R.
J. Chem. Soc., Perkin Trans. 2 1989, 417.
a Isolated yield. b CrO3 (3 equiv), Bu4NIO4 (3 equiv), -40 °C, 10 min.
c CrO2(OAc)2 (5 mol %), H5IO6 (3 equiv), -40 to 0 °C, 2 h. d -20 °C, 1
h. e Prolonged reaction 12 h gave tertiary acetamide (82%, X ) NHAc).
f Amide (19%, X ) NHAc) and acetophenone (10%) isolated. g Amide (4%,
X ) NHAc) and acetophenone (3%) formed. h H5IO6 (10 equiv), 2 h.
(O-O); 945 cm-1), followed by insertion to the hydrocarbon C-H
bond, may afford Cr[VI] compounds C1 and C2 which decompose
to SM1 and SM2, the precatalysts (Scheme 3). The major decrease
in yield with 6 equiv of acetic anhydride (Table 1) seems to indicate
a role for water in the oxidative process.
(13) Catalytic chromium[VI] has been employed with periodate for oxidation
of alcohols: Schmieder-van de Voondervoort, L.; Bouttemy, S.; Padro´n,
J. M.; Le Bras, J.; Muzart, J.; Alsters, P. L. Synlett 2002, 243. Zhao, M.;
Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J.; Reider,
P. J. Tetrahedron Lett. 1998, 39, 5323.
Acknowledgment. We thank the National Institute of Health
(CA 60548) for funding.
(14) Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R. J. Am. Chem. Soc. 1989,
Supporting Information Available: Representative experimental
procedures, and 1H, 13C NMR of all new compounds (PDF). This
111, 6749.
(15) Moody, C. J.; O’Connell, J. L. Chem. Commun. 2000, 1311.
(16) See: Luzzio, F. A.; Moore, W. J. J. Org. Chem. 1993, 58, 2966. Jeong,
J. U.; Fuchs, P. L. J. Am. Chem. Soc. 1994, 116, 773.
(17) Chromoyl iodate, the stable iodine[V] analogue of this reagent, is well-
known: Kebir, A.; Vast, P. C. R. Acad. Sc. Paris 1973, 276, 503-506.
Balicheva. Res. 1973, 5, 507. Dupuis, T. Mikrochim. Acta 1967, 461.
References
(1) Cephalostatin Support Studies 23. For article 22, see: Lee, S. M.; LaCour,
T. G.; Lantrip, D. A.; Fuchs, P. L. Org. Lett. 2002, 4, 313, 317.
JA026734O
9
J. AM. CHEM. SOC. VOL. 124, NO. 47, 2002 13979