Published on Web 10/03/2007
Benzimidazole and Related Ligands for Cu-Catalyzed
Azide-Alkyne Cycloaddition
Valentin O. Rodionov, Stanislav I. Presolski, Sean Gardinier, Yeon-Hee Lim, and
M. G. Finn*
Contribution from the Department of Chemistry and The Skaggs Institute of Chemical Biology,
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
Abstract: Tris(2-benzimidazolylmethyl)amines have been found to be superior accelerating ligands for the
copper(I)-catalyzed azide-alkyne cycloaddition reaction. Candidates bearing different benzimidazole
N-substituents as well as benzothiazole and pyridyl ligand arms were evaluated by absolute rate
measurements under relatively dilute conditions by aliquot quenching kinetics and by relative rate
measurements under concentrated conditions by reaction calorimetry. Benzimidazole-based ligands with
pendant alkylcarboxylate arms proved to be advantageous in the latter case. The catalyst system was
shown to involve more than one active species, providing a complex response to changes in pH and buffer
salts and the persistence of high catalytic rate in the presence of high concentrations of coordinating ligands.
The water-soluble ligand (BimC
4 3
A) was found to be especially convenient for the rapid and high-yielding
synthesis of several functionalized triazoles with 0.01-0.5 mol % Cu.
Introduction
Unlike the well-established thermal Huisgen cycloaddition
2
4
Since its discovery in 2002,1,2 the copper(I)-catalyzed azide-
reaction, the Cu-accelerated version offers consistent 1,4-
stereoselectivity, is not limited to highly activated alkynes, and
proceeds efficiently even at micromolar concentrations of
reactants in aqueous media. Many investigators have reported
the use of amines as copper-binding ligands and/or protic bases
to aid the process, including 2,6-lutidine, triethylamine, N,N,N′-
trimethylenediamine, diisopropylethylamine, proline, Amberlyst
A21 amine resin, and other aliphatic amines (see Supporting
Information for a list of references). The most commonly used
accelerating ligand has been tris((1-benzyl-1H-1,2,3-triazol-4-
yl)methyl)amine (TBTA, 1) discovered by the Sharpless labora-
alkyne cycloaddition (CuAAC) reaction has received a great
3
4,5
deal of use in such diverse fields as bioconjugation in Vitro
6-9
10,11
12-16
and in ViVo, dendrimer synthesis
and polymer ligation,
combinatorial organic synthesis,17,18 and surface science.
19-23
(
(
(
1) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057-
3
062.
2) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596-2599.
3) More than 600 articles have been published describing the use of the
CuAAC process since its discovery; the particular examples cited here are
therefore intended to be illustrative rather than comprehensive.
4) Gupta, S. S.; Kuzelka, J.; Singh, P.; Lewis, W. G.; Manchester, M.; Finn,
M. G. Bioconjugate Chem. 2005, 16, 1572-1579.
(
(
2
5
tory. Here we describe the preparation, comparative kinetic
evaluation, and practical use of a related family of ligands based
on the motif of a central tertiary amine surrounded by three
benzimidazole heterocycles. The accompanying article describes
kinetic measurements of mechanistic relevance and reports on
our current understanding of the reaction mechanism.
5) Dirks, A. J.; Van Berkel, S. S.; Hatzakis, N. S.; Opsteen, J. A.; van Delft,
F. L.; Cornelissen, J. J. L. M.; Rowan, A. E.; van Hest, J. C. M.; Rutjes,
F. P. J. T.; Nolte, R. J. M. Chem. Commun. 2005, 4172-4174.
6) Link, A. J.; Tirrell, D. A. J. Am. Chem. Soc. 2003, 125, 11164-11165.
7) Speers, A. E.; Cravatt, B. F. Chem. Biol. 2004, 11, 535-546.
8) Beatty, K. E.; Xie, F.; Wang, Q.; Tirrell, D. A. J. Am. Chem. Soc. 2005,
(
(
(
1
27, 14150-14151.
(9) Sieber, S. A.; Niessen, S.; Hoover, H. S.; Cravatt, B. F. Nat. Chem. Biol.
2
006, 2, 274-281.
(
10) Wu, P.; Malkoch, M.; Hunt, J.; Vestberg, R.; Kaltgrad, E.; Finn, M. G.;
Results and Discussion
Fokin, V. V.; Sharpless, K. B.; Hawker, C. J. Chem. Commun. 2005, 5775-
5
777.
Ligand Synthesis. The parent structure of the new ligand
class described here [tris(2-benzimidazolylmethyl)amine, des-
ignated (BimH)3 as explained in the caption to Figure 1] has
(
(
(
11) Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell,
T. P.; Wu, P.; Fokin, V. V. Macromolecules 2005, 38, 3663-3678.
12) Gupta, S. S.; Raja, K. S.; Kaltgrad, E.; Strable, E.; Finn, M. G. Chem.
Commun. 2005, 4315-4317.
13) Parrish, B.; Breitenkamp, R. B.; Emrick, T. J. Am. Chem. Soc. 2005, 127,
7
404-7410.
(20) Meng, J.-C.; Averbuj, C.; Lewis, W. G.; Siuzdak, G.; Finn, M. G. Angew.
Chem., Int. Ed. 2004, 43, 1255-1260.
(14) Opsteen, J. A.; van Hest, J. C. M. Chem. Commun. 2005, 57-59.
(15) Binder, W. H.; Kluger, C. Macromolecules 2004, 37, 9321-9330.
(16) Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski,
K. Macromolecules 2005, 38, 7540-7545.
(21) Collman, J. P.; Devaraj, N. K.; Chidsey, C. E. D. Langmuir 2004, 20, 1051-
1053.
(22) Lummerstorfer, T.; Hoffmann, H. J. Phys. Chem. B 2004, 108, 39663-
33966.
(
(
(
17) Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson, J. C.; Wong, C.-H. J. Am.
Chem. Soc. 2002, 124, 14397-14402.
(23) Devaraj, N. K.; Miller, G. P.; Ebina, W.; Kakaradov, B.; Collman, J. P.;
Kool, E. T.; Chidsey, C. E. D. J. Am. Chem. Soc. 2005, 127, 8600-8601.
(24) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.;
Wiley: New York, 1984; Vol. 1, pp 1-176.
18) Goess, B. C.; Hannoush, R. N.; Chan, L. K.; Kirchhausen, T.; Shair, M.
D. J. Am. Chem. Soc. 2006, 128, 5391-5403.
19) D ´ı az, D. D.; Punna, S.; Holzer, P.; McPherson, A. K.; Sharpless, K. B.;
Fokin, V. V.; Finn, M. G. J. Polym. Sci., Part A: Polym. Chem. 2004, 42,
(25) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6,
2853-2855.
4
392-4403.
1
2696 J. AM. CHEM. SOC. 2007, 129, 12696-12704
9
10.1021/ja072678l CCC: $37.00 © 2007 American Chemical Society