4944
M. Fujii et al. / Tetrahedron Letters 50 (2009) 4941–4944
anaerobic conditions
G. candidum 4597
aerobic conditions
G. candidum 5767
O
OH
O
O
HO
O
99% conv.
75% yield
98% conv.
83% yield
3
2
1
>99% de, >99% ee
>99% de, >99% ee
G. candidum 5767
M. heimalis 6095
cyclohexanone
HO
OH
HO
O
HO
OH
O
OH
aerobic conditions
99% conv.
83% yield
75% conv.
68% yield
6
4
7
5
>99% ee
>99% ee
Scheme 4.
Iwamoto, M.; Nakada, M. J. Org. Chem. 2005, 70, 4652–4658; (h) Fujieda, S.;
Tomita, M.; Fuhshuku, K.; Ohba, S.; Nishiyama, S.; Sugai, T. Adv. Synth. Catal.
2005, 347, 1099–1109.
zymes, affording S-alcohols, and irreversible reductases, R-en-
zymes, were involved in the reaction to afford both enantiomers
independently under different conditions. This work has found that
the reversible reductase affording the S-alcohol recognizes the
(2S,3S)-configuration of 2 and irreversible S-enzymes affording 3
are involved in the reaction. In fact, S-enzymes possessing different
stereoselectivities on the reduction of ethyl 2-methyl-3-oxobut-
anoate have been reported.13 Normally, a single microbe could
not afford different isomers in high enantio- and diastereoselectiv-
ity. However the unique enantio- selective and diastereoselective
oxidase in G. candidum was able to afford three isomers in high
enantio- and diastereoselectivity. Application of the reversibility
of the enzyme is a useful method for the preparation of optically
active compounds in high yield.
3. (a) Brooks, D. W.; Mazdiyasni, H.; Grothaus, P. G. J. Org. Chem. 1987, 52, 3223–
3232; (b) Brooks, D. W.; Grothaus, P. G.; Irwin, W. L. J. Org. Chem. 1982, 47,
2820–2821; (c) Brooks, D. W.; Grothaus, P. G.; Palmer, J. T. Tetrahedron Lett.
1982, 23, 4187–4190.
4. (a) Nakamura, K.; Takenaka, K.; Fujii, M.; Ida, Y. Tetrahedron Lett. 2002, 43,
3629–3631; (b) Nakamura, K.; Fujii, M.; Ida, Y. In Asymmetric Reduction of
Ketones: Synthesis of Both Enantiomers of 1-Phenylethanol by Reduction of
Acetophenone with Geotrichum candidum IFO 5767; Roberts, S. M., Ehittall, J.,
Eds.; Catalysts for Fine Chemical Synthesis; John Wiley: New York, 2007; Vol. 5,
pp 93–97.
5. Nakamura, K.; Fujii, M.; Ida, Y. J. Chem. Soc., Perkin Trans. 1 2000, 3205–3211.
6. Nakamura, K.; Fujii, M.; Ida, Y. Tetrahedron: Asymmetry 2001, 12, 3147–
3153.
7. Compound 2: From 1 (300 mg, 1.97 mmol) to (2S,3S)-2 (255 mg, 1.66 mmol,
83%, >99% ee); [
a] [a] +80.7 (c 0.4, CHCl3). IR
+106.2 (c 0.43, CHCl3), lit.3a
D D
(neat) ;
m
: 3457, 1730, 1640 cmÀ1 1H NMR (CDCl3, 200 MHz): d 0.97 (s, 3H),
1.70–2.56 (m, 7H), 3.98–4.14 (m, 1H), 5.01–5.18 (m, 2H), 5.76–5.95 (m, 1H);
13C NMR (CDCl3, 50 MHz); d 19.6, 27.7, 34.0, 35.3, 53.2, 77.3, 118.1, 134.3,
221.0; Anal. Calcd for C9H14O2: C, 70.10; H, 9.15. Found: C, 69.89; H. 9.15.
8. Compound 3: From 1 (100 mg, 0.64 mmol) to (2R,3S)-3 (76 mg, 0.49 mmol,
References and notes
1. (a) Gibian, H.; Kieslich, K.; Koch, H. J.; Kosmol, H.; Rufer, C.; Schroeder, E.;
Voessing, R. Tetrahedron Lett. 1966, 21, 2321–2330; (b) Schwarz, S.;
Truckenbrodt, G.; Meyer, M.; Zepter, R.; Weber, G.; Carl, C.; Wentzke, M.;
Schick, H.; Welzel, H. P. J. Prakt. Chem. 1981, 323, 729–736; (c) Brooks, D. W.;
Grothaus, P. G.; Mazdiyasni, H. J. Am. Chem. Soc. 1983, 105, 4472–4473; (d)
Kitahara, T.; Miyake, M.; Kido, M.; Mori, K. Tetrahedron: Asymmetry 1990, 1,
775–782; (e) Katoh, T.; Mizumoto, S.; Fudesaka, M.; Nakashima, Y.; Kajimoto,
T.; Node, M. Synlett 2006, 2176–2182; (f) Brooks, D. W.; Mazdiyasni, H.;
Chakrabarti, S. Tetrahedron Lett. 1984, 25, 1241–1244; (g) Wei, Z.-L.; Li, Z.-Y.;
Lin, G.-Q. Synthesis 2000, 1673–1676; (h) Shimoda, K.; Kubota, N.; Hamada, H.;
Hamada, H. Tetrahedron Lett. 2006, 47, 1541–1544.
75%, >99% ee); [
a
]
À81.0 (c 0.59, CHCl3), lit.3a
[a
]
D
À86.5 (c 0.26, CHCl3); IR
D
(neat)
m
: 3434, 1732, 1640 cmÀ1 1H NMR (CDCl3, 200 MHz): d 0.98 (s, 3H),
;
1.78–1.194 (m, 1H) 2.01–2.50 (m, 6H), 4.48 (t, 1H, J = 6.4 Hz), 5.01–5.14 (m,
2H), 5. 26–5.83 (m, 1H); 13C NMR (CDCl3, 50 MHz): d 15.0, 27.5, 34.9, 39.7, 53.0,
75.2, 118.7, 133.5, 220.2; Anal. Calcd for C9H14O2: C, 70.10; H, 9.15. Found: C,
69.94; H. 9.09.
9. Gaultieri, F.; Melchiorre, C.; Giannella, M.; Pigini, M. J. Org. Chem. 1975, 40,
2241–2243.
10. Compound 4: From (1R,2R,3S)-6 (100 mg, 0.64 mmol) to (2R,3R)-4 (81 mg,
0.53 mmol, 83%, >99% ee). [
a
]
À105.0 (c 0.58, CHCl3). Spectral data including
D
1H NMR and 13C NMR were identical to those of 2.
11. Nakamura, K.; Inoue, Y.; Matsuda, T.; Misawa, I. J. Chem. Soc., Perkin Trans. 1
1999, 2397–2402.
2. (a) Urdiales, E. G.; Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313–354; (b)
Schoffers, E.; Golebiowski, A.; Johnson, C. R. Tetrahedron 1996, 52, 3769–3826;
(c) Chikamatsu, H.; Taniguchi, M.; Kanemitsu, T. Bull. Chem. Soc. Jpn. 1986, 59,
2663–2665; (d) Iriuchijima, S.; Hasegawa, K.; Tsuchihashi, G. Agric. Biol. Chem.
12. Compound 5: From (1R,2R,3S)-7 (120 mg, 0.77 mmol) to (2R,3R)-5 (80 mg,
}
0.52 mmol, 68%, >99% ee). [a] H
D +85.4 (c 0.58, CHCl3). Spectral data including 1
1982, 46, 1907–1910; (e) Bjorkling, F.; Boutelje, J.; Gatenbeck, S.; Hult, K.;
Norin, T.; Szmulik, P. Tetrahedron 1985, 41, 1347–1352; (f) Schneider, M.; Engel,
N.; Boensmann, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 66; (g) Watanabe, H.;
NMR and 13C NMR were identical to those of 3.
13. Kawai, Y.; Kawanobe, K.; Ohno, A. Bull. Chem. Soc. Jpn. 1997, 70, 1683–1686.