Paper
Organic & Biomolecular Chemistry
operation is RM1–2 since it is easier to break two hydrogen
bonds than three for opening the host; Table 3 shows that
RM1–2 dominates racemisations in the gas phase, yet our com-
putations did not consider the swapping of entrapped guest
with solvent molecule(s) and/or entropic changes in the
process. When dichloromethane enters/exits basket 1, a rather
insignificant population of the basket’s cavity (PC = 0.27) also
enforces the RM1–2 mechanistic pathway with only one
pyridine gate opening to permit the racemization with/without
the guest exchange.
Notes and references
1 D. J. Cram, Nature, 1992, 356, 29–36.
2 F. Hof and J. Rebek Jr., Proc. Natl. Acad. Sci. U. S. A., 2002,
99, 4775–4777.
3 K. N. Houk, K. Nakamura, C. Sheu and A. E. Keating,
Science, 1996, 273, 627–629.
4 L. C. Palmer and J. Rebek Jr., Org. Biomol. Chem., 2004, 2,
3051–3059.
5 S. Rieth, K. Hermann, B.-Y. Wang and J. D. Badjic, Chem.
Soc. Rev., 2011, 40, 1609–1622.
6 J. B. Wittenberg and L. Isaacs, Supramol. Chem. Mol. Nano-
mater., 2012, 1, 25–43.
7 R. G. Chapman, G. Olovsson, J. Trotter and J. C. Sherman,
J. Am. Chem. Soc., 1998, 120, 6252–6260.
8 A. Varnek, S. Helissen, G. Wipff and A. Collet, J. Comput.
Chem., 1998, 19, 820–832.
9 L. Garel, J. P. Dutasta and A. Collet, Angew. Chem., 1993,
105, 1249–1251 (Angew. Chem., Int. Ed. Engl., 1993,
1232(1248), 1169–1271).
10 S. Mecozzi and J. Rebek Jr., Chem.–Eur. J., 1998, 4, 1016–
1022.
For smaller basket 1 (226 Å3), guests CHCl3/CFCl3/CCl4
populate a greater portion of its cavity (PC = 0.33–0.39). The
guest exchange would necessitate enough room, thereby en-
forcing the rotation of all three gates28 and therefore the RM3
mechanism. The sole P/M rotation of the gates, without the
guest exchange, might perhaps follow the RM1–2 alternative
since it is energetically more favourable to break apart a single
gate (Table 3). On the basis of our measurements (Fig. 6C),
however, the guest exchange via the RM3 mechanism must be
dominating the racemisations with 1 carrying more sizeable
guests.28,30
11 J. Canceill, M. Cesario, A. Collet, J. Guilhem, L. Lacombe,
B. Lozach and C. Pascard, Angew. Chem., 1989, 101, 1249–
1251.
Conclusions
Two differently sized baskets employ functionalized pyridine 12 M. Rekharsky and Y. Inoue, Supramol. Chem. Mol. Nano-
gates at the rim to form a seam of hydrogen bonds and mater., 2012, 1, 117–133.
thereby adopt P and M helical orientations. The P/M racemiza- 13 C. A. Hunter, Angew. Chem., Int. Ed., 2004, 43, 5310–5324.
tion mechanism appears to be a function of the guest’s 14 K. T. Chapman and W. C. Still, J. Am. Chem. Soc., 1989, 111,
volume and could be elucidated by considering the population
of the basket’s cavity. Thus, larger guests that more efficiently 15 J. Canceill, L. Lacombe and A. Collet, J. Am. Chem. Soc.,
fill the host (PC > 0.30) enforce the geared RM3 pathway: the 1986, 108, 4230–4232.
3075–3077.
entrance/exit of guests necessitate the movement of all three 16 A. Collet, Compr. Supramol. Chem., 1996, 2, 325–365.
gates. When the guest occupies a small portion of the inner 17 N. R. Voss and M. Gerstein, Nucleic Acids Res., 2010, 38,
space of the gated host (PC < 0.27), however, the rotation of
W555–W562.
one gate creates a large enough aperture for facile in/out guest 18 Z. Yan, T. McCracken, S. Xia, V. Maslak, J. Gallucci,
exchange via the RM1–2 mechanism.
C. M. Hadad and J. D. Badjic, J. Org. Chem., 2008, 73, 355–
Understanding the action of dynamic hosts, akin to 1 and
363.
2, is important for creating functional systems resembling 19 A. Godec and F. Merzel, J. Am. Chem. Soc., 2012, 134,
those found in nature.53 Our study about subtle mechanistic
17574–17581.
variations of molecular gating could be useful for improving 20 B. C. Gibb, Chemosensors, 2011, 3–18.
catalysis54 and/or controlling the trafficking of molecules in 21 F. Hof, S. L. Craig, C. Nuckolls and J. Rebek Jr., Angew.
artificial environments.55
Chem., Int. Ed., 2002, 41, 1488–1508.
22 I. A. Sedov, M. A. Stolov and B. N. Solomonov, J. Phys. Org.
Chem., 2011, 24, 1088–1094.
23 N. Graulich, H. Hopf and P. R. Schreiner, Chem. Soc. Rev.,
2010, 39, 1503–1512.
Acknowledgements
This work was financially supported with funds obtained from 24 B.-Y. Wang, X. Bao, Z. Yan, V. Maslak, C. M. Hadad
the National Science Foundation (CHE-1012146, to J.D.B.) and
the Department of Defense, the Defense Threat Reduction
and J. D. Badjic, J. Am. Chem. Soc., 2008, 130, 15127–
15133.
Agency (HDTRA1-11-1-0042, to J.D.B. and C.M.H.). The content 25 D. A. Evans and J. S. Evans, J. Org. Chem., 1998, 63, 8027–
of the information does not necessarily reflect the position or 8030.
the policy of the federal government, and no official endorse- 26 S. Tartaggia, A. Scarso, P. Padovan, O. De Lucchi and
ment should be inferred. The Ohio Supercomputer Center is F. Fabris, Org. Lett., 2009, 11, 3926–3929.
gratefully acknowledged for providing generous computational 27 B.-Y. Wang, X. Bao, S. Stojanovic, C. M. Hadad and
resources.
J. D. Badjic, Org. Lett., 2008, 10, 5361–5364.
7674 | Org. Biomol. Chem., 2013, 11, 7667–7675
This journal is © The Royal Society of Chemistry 2013