10.1002/chem.202002320
Chemistry - A European Journal
FULL PAPER
General Procedure for Minisci Reaction mediated by NaBr
(Procedure B): 10 mL crimp vial, equipped with a magnetic stirring bar
was charged with [Ir(dtbby)(ppy)2]PF6 (2.7 mg, 3 mol%), CTAB (92 mg,
0.25 mmol) and NaBr (2 mg, 0.02 mmol). The vial was sealed and
degassed via two pump-argon cycles, followed by water (5 mL) addition.
The resulting mixture was degassed via five pump-argon cycles, the
heterocycle (0.10 mmol) and alkyl bromide (0.20 mmol) were added under
argon and the mixture was degassed again via two pump-argon cycles,
keeping the vacuum above 50 mbar. The reaction mixture was irradiated
with 800 mW 451 nm LEDs through the plane bottom side and stirred
intensely for 42 h. The temperature was maintained at 40 °C to 42 °C by
cooling with the built-in cooling fan. Then the vial was opened and the
crude reaction mixture was transferred to a separatory funnel. Solution of
NaHCO3 (1 M, 5 mL) and brine (20 mL) were added and the mixture was
extracted with AcOEt (3 x 20 mL). Combined organic fractions were
washed with fresh brine, dried over Na2SO4, filtrated and concentrated in
vacuo.
[22] P. Ren, I. Salihu, R. Scopelliti, X. Hu, Org. Lett. 2012, 14, 1748–1751.
[23] B. Xiao, Z. J. Liu, L. Liu, Y. Fu, J. Am. Chem. Soc. 2013, 135, 616–619.
[24] X. Wu, J. W. T. See, K. Xu, H. Hirao, J. Roger, J.-C. Hierso, J. S. Zhou,
Angew. Chemie 2014, 126, 13791–13795; Angew. Chem. Int. Ed. 2014,
53, 13573–13577.
[25] T. McCallum, L. Barriault, Chem. Sci. 2016, 7, 4754–4758.
[26] C. D. McTiernan, M. Morin, T. McCallum, J. C. Scaiano, L. Barriault,
Catal. Sci. Technol. 2016, 6, 201–207.
[27] J. Dong, X. Lyu, Z. Wang, X. Wang, H. Song, Y. Liu, Q. Wang, Chem.
Sci. 2019, 10, 976–982.
[28] J. J. Perkins, J. W. Schubert, E. C. Streckfuss, J. Balsells, A. ElMarrouni,
Eur. J. Org. Chem. 2019, 4, 2–10.
[29] R. Chang, J. Fang, J.-Q. Chen, D. Liu, G.-Q. Xu, P.-F. Xu, ACS Omega
2019, 4, 14021–14031.
[30] M. Giedyk, R. Narobe, S. Weiß, D. Touraud, W. Kunz, B. König, Nat.
Catal. 2020, 3, 40–47.
[31] P. W. Jennings, D. G. Pillsbury, J. L. Hall, V. T. Brice, J. Org. Chem. 1976,
41, 719–722.
[32] T. U. Connell, C. L. Fraser, M. L. Czyz, Z. M. Smith, D. J. Hayne, E. H.
Doeven, J. Agugiaro, D. J. D. Wilson, J. L. Adcock, A. D. Scully, D. E.
Gómez, N. W. Barnett, A. Polyzos, P. S. Francis, J. Am. Chem. Soc.
2019, 141, 17646–17658.
Acknowledgements
We gratefully acknowledge funding from the National Science
Centre, Poland (SONATA 2018/31/D/ST5/00306), Fundação de
Amparo à Pesquisa do Estado de São Paulo – FAPESP
(2018/20956-5) and the German Science Foundation (DFG, KO
1537/18-1) for the financial support.
[33] I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725–728.
[34] F. Glaser, C. Kerzig, O. S. Wenger, Angew. Chem. 2020, 132, 2– 23;
Angew. Chem. Int. Ed. 2020, 59, 2–21.
[35] D. Petzold, M. Giedyk, A. Chatterjee, B. König, Eur. J. Org. Chem. 2020,
1193–1244.
Keywords: photoredox catalysis • visible-light • micellar solution
• Minisci • alkyl bromide • heteroarenes • C-H functionalization
[36] P. Zhang, C. C. Le, D. W. C. MacMillan, J. Am. Chem. Soc. 2016, 138,
8084–8087.
[37] T. Kawasaki, N. Ishida, M. Murakami, J. Am. Chem. Soc. 2020, 142,
3366–3370.
[1]
[2]
R. S. J. Proctor, R. J. Phipps, Angew. Chem. 2019, 131, 13802– 13837;
Angew. Chem. Int. Ed. 2019, 58, 13666–13699.
[38] Z. Wang, X. Ji, T. Han, G.-J. Deng, H. Huang, Adv. Synth. Catal. 2019,
361, 5643–5647.
K. C. Majumdar, S. K. Chattopadhyay, Heterocycles in Natural Product
Synthesis, Wiley-VCH, Weinheim, Germany, 2011.
D. N. Mai, R. D. Baxter, Org. Lett. 2016, 18, 3738–3741.
K. Matcha, A. P. Antonchick, Angew. Chem. 2013, 125, 2136–2140;
Angew. Chemie Int. Ed, 2013, 52, 2082–2086.
[39] Z. Wang, Q. Liu, X. Ji, G.-J. Deng, H. Huang, ACS Catal. 2020, 10, 154–
159.
[3]
[4]
[40] M. Zidan, A. O. Morris, T. McCallum, L. Barriault, Eur. J. Org. Chem.
2020, 1453–1458.
[41] M. Cortes-Clerget, N. Akporji, J. Zhou, F. Gao, P. Guo, M. Parmentier, F.
Gallou, J. Y. Berthon, B. H. Lipshutz, Nat. Commun. 2019, 10, 1–10.
[42] I. Capek, T. Kocsisova, Des. Monomers Polym. 2011, 14, 327–345.
[43] S. Handa, B. Jin, P. P. Bora, Y. Wang, X. Zhang, F. Gallou, J. Reilly, B.
H. Lipshutz, ACS Catal. 2019, 9, 2423–2431.
[5]
Y. Siddaraju, M. Lamani, K. R. Prabhu, J. Org. Chem. 2014, 79, 3856–
3865.
[6]
[7]
[8]
Z. Wang, X. Ji, J. Zhao, H. Huang, Green Chem. 2019, 21, 5512–5516.
P. Liu, W. Liu, C. J. Li, J. Am. Chem. Soc. 2017, 139, 14315–14321.
W.-F. Tian, C.-H. Hu, K.-H. He, X.-Y. He, Y. Li, Org. Lett. 2019, 21, 6930–
6935.
[44] L. Baxová, R. Cibulka, F. Hampl, J. Mol. Catal. A Chem. 2007, 277, 53–
60.
[9]
F. Minisci, R. Bernardi, F. Bertini, R. Galli, M. Perchinummo, Tetrahedron
1971, 27, 3575–3579.
[45] M. Bu, G. Lu, J. Jiang, C. Cai, Catal. Sci. Technol., 2018, 8, 3728–3732.
[46] T. Kohlmann, C. Kerzig, M. Goez, Chem. Eur. J. 2019, 25, 9991–9996.
[47] C. Kerzig, M. Goez, Chem. Sci. 2016, 7, 3862–3868.
[48] R. Naumann, F. Lehmann, M. Goez, Angew. Chem. 2018, 130, 1090–
1093; Angew. Chem. Int. Ed. 2018, 57, 1078–1081.
[49] M. H. Gehlen, J. Photochem. Photobiol. C Photochem. Rev. 2020, 42,
100338.
[10] J. Kan, S. Huang, J. Lin, M. Zhang, W. Su, Angew. Chem. 2015, 127,
2227–2231; Angew. Chem. Int. Ed. 2015, 54, 2199–2203.
[11] G. A. Molander, V. Colombel, V. A. Braz, Org. Lett. 2011, 13, 1852–1855.
[12] F. J. R. Klauck, M. J. James, F. Glorius, Angew.Chem. 2017, 129,12505–
12509; Angew. Chem. Int. Ed. 2017, 56, 12336–12339.
[13] X. Ma, S. B. Herzon, J. Am. Chem. Soc. 2016, 138, 8718–8721.
[14] G. X. Li, C. A. Morales-Rivera, Y. Wang, F. Gao, G. He, P. Liu, G. Chen,
Chem. Sci. 2016, 7, 6407–6412.
[50] H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714–723.
[51] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113,
5322–5363.
[15] I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L.
Sobel, P. S. Baran, J. Am. Chem. Soc. 2010, 132, 13194–13196.
[16] D. Xue, Z. H. Jia, C. J. Zhao, Y. Y. Zhang, C. Wang, J. Xiao, Chem. Eur.
J. 2014, 20, 2960–2965.
[52] M. J. W. Taylor, W. T. Eckenhoff, T. Pintauer, Dalt. Trans. 2010, 39,
11475–11482.
[53] M. Pirtsch, S. Paria, T. Matsuno, H. Isobe, O. Reiser, Chem. Eur. J. 2012,
18, 7336–7340.
[17] D. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M. Tudge,
Angew. Chem. Int. Ed. 2014, 53, 4802–4806.
[54] M. N. C. Balili, T. Pintauer, Dalt. Trans. 2011, 40, 3060–3066.
[55] T. Hou, P. Lu, P. Li, Tetrahedron Lett. 2016, 57, 2273–2276.
[56] Q. Kong, M. Wulff, J. H. Lee, S. Bratos, H. Ihee, J. Am. Chem. Soc. 2007,
129, 13584–13591.
[18] F. Minisci, C. Giordano, E. Vismara, S. Levi, V. Tortelli, J. Am. Chem.
Soc. 1984, 106, 7146–7150.
[19] F. Minisci, E. Vismara, F. Fontana, G. Morini, M. Serravalle, C. Giordano,
J. Org. Chem. 1986, 51, 4411–4416.
[57] S. Tripathi, S. N. Singh, L. D. S. Yadav, RSC Adv. 2016, 6, 14547–14551.
[58] C. Zhao, X. Lin, W. M. Kwok, X. Guan, Y. Du, D. Wang, K. F. Hung and
D. L. Phillips, Chem. Eur. J. 2005, 11, 1093–1108.
[20] N. B. Bissonnette, M. J. Boyd, G. D. May, S. Giroux, P. Nuhant, J. Org.
Chem. 2018, 83, 10933–10940.
[59] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G.
Terraneo, Chem. Rev. 2016, 116, 2478–2601.
[21] P. Nuhant, M. S. Oderinde, J. Genovino, A. Juneau, Y. Gagné, C. Allais,
G. M. Chinigo, C. Choi, N. W. Sach, L. Bernier, Y. M. Fobian, M. W.
Bundesmann, B. Khunte, M. Frenette, O. O. Fadeyi, Angew. Chem. 2017,
129, 15511–15515; Angew. Chem. Int. Ed. 2017, 56, 15309–15313.
[60] T. Brinck, A. N. Borrfors, J. Mol. Model. DOI:10.1007/s00894-019-4014-
7.
6
This article is protected by copyright. All rights reserved.