Journal of the American Chemical Society
Article
Standard geometry optimization procedures were followed to
obtain geometries and potential energies for stationary points along
the reaction paths. Normal mode analysis was performed to verify the
nature of a particular stationary point (minimum or transition state).
The resulting set of vibrational frequencies was employed (without
scaling) to determine zero-point energy corrections. Enthalpies (ΔH,
ΔH⧧) and Gibbs’ free energies (ΔG, ΔG⧧; T = 298.15 K, P = 1 atm)
were subsequently obtained from the potential energies (ΔE, ΔE⧧)
using standard thermodynamic corrections.61 Increased atomic grid
sizes were used for numerical integrations to enhance computational
stability and accuracy62 in geometry optimizations and normal mode
calculations (grid = ultrafine option).63 Geometries of stationary
points and tables containing energetic quantities are available as
Supporting Information. Solvation effects were not considered
explicitly in the calculations since the experiments uniformly were
carried out in nonpolar hydrocarbons.
(15) Goldman, A. S.; Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.;
Brookhart, M. Science 2006, 312, 257−261.
(16) Bailey, B. C.; Schrock, R. R.; Kundu, S.; Goldman, A. S.; Huang,
Z.; Brookhart, M. Organometallics 2009, 28, 355−360.
(17) Burnett, R. L.; Hughes, T. R. J. Catal. 1973, 31, 55−64.
(18) (a) Vidal, V.; Theolier, A.; Thivolle-Cazat, J.; Basset, J.-M.
Science 1997, 276, 99. (b) Le Roux, E.; Taoufik, M.; Coperet, C.; de
́
Mallmann, A.; Thivolle-Cazat, J.; Basset, J.-M.; Maunders, B. M.;
Sunley, G. J. Angew. Chem. 2005, 44, 6755. (c) Basset, J. M.; Coperet,
C.; Lefort, L.; Maunders, B. M.; Maury, O.; Le Roux, E.; Saggio, G.;
Soignier, S.; Soulivong, D.; Sunley, G. J.; Taoufik, M.; Thivolle-Cazat,
J. J. Am. Chem. Soc. 2005, 127, 8604. (d) Le Roux, E.; Taoufik, M.;
Baudouin, A.; Coperet, C.; Thivolle-Cazat, J.; Basset, J.-M.; Maunders,
B. M.; Sunley, G. J. Adv. Synth. Catal. 2007, 349, 231.
(19) (a) Dry, M. E. Catal. Today 2002, 71, 227−241. (b) Schulz, H.
Appl. Catal., A 1999, 186, 3−12.
(20) (a) International Energy Agency (IAE) World Energy Outlook
(b) Ayala, L. F.; Kouassi, J. P. Energy Fuels 2007, 21, 1592.
(21) (a) Schrock, R. R. Chem. Commun. 2005, 2773−2777. (b) Fox,
H. H.; Lee, J. K.; Park, L. Y.; Schrock, R. R. Organometallics 1993, 12,
759−768. (c) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.;
DiMare, M.; O’Regan, M. J. Am. Chem. Soc. 1990, 112, 3875−3886.
(22) Liu, F.; Pak, E. B.; Singh, B.; Jensen, C. M.; Goldman, A. S. J.
Am. Chem. Soc. 1999, 121, 4086−4087.
ASSOCIATED CONTENT
■
S
* Supporting Information
Tables of relative electronic energies, enthalpies, entropies and
free energies, and Cartesian coordinates and absolute energies
for all minima and transition states shown in the figures. Eyring
plots of EXSY kinetic data. Complete reference 32. This
material is available free of charge via the Internet at http://
(23) Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S.
Chem. Rev. 2011, 111, 1761−1779.
(24) Krogh-Jespersen, K.; Czerw, M.; Summa, N.; Renkema, K. B.;
Achord, P. D.; Goldman, A. S. J. Am. Chem. Soc. 2002, 124, 11404−
11416.
AUTHOR INFORMATION
■
Corresponding Author
(25) Gottker-Schnetmann, I.; Brookhart, M. J. Am. Chem. Soc. 2004,
̈
126, 9330−9338.
(26) Biswas, S.; Brookhart, M.; Goldman, A. S.; Krogh-Jespersen, K.
Manuscript in preparation.
Notes
The authors declare no competing financial interest.
(27) (a) McGhee, W. D.; Bergman, R. G. J. Am. Chem. Soc. 1985,
107, 3388. (b) McGhee, W. D.; Bergman, R. G. J. Am. Chem. Soc.
1988, 110, 4246.
(28) Tulip, T. H.; Ibers, J. A. J. Am. Chem. Soc. 1979, 101, 4201−
4211.
(29) Wakefield, J. B.; Stryker, J. M. J. Am. Chem. Soc. 1991, 113, 7057.
(30) NIST Chemistry WebBook; NIST Standard Reference Database
(31) Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.;
Singhal, M.; Xu, L.; Mendes, P.; Kummer, U. Bioinformatics 2006, 22,
3067−3074.
(32) Frisch, M. J.; et al., Gaussian 09, revision A.02; Gaussian, Inc.:
Wallingford, CT, 2009. See Supporting Information for the complete
reference to Gaussian 09.
ACKNOWLEDGMENTS
■
We acknowledge funding by the NSF (Grant CHE-0650456)
as part of the Center for Enabling New Technologies through
Catalysis (CENTC).
REFERENCES
■
(1) Herrmann, W. A.; Prinz, M. In Applied Homogeneous Catalysis
with Organometallic Compounds, 2nd ed.; Cornils, B., Herrmann, W. A.,
Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002; Vol. 3, p
1119−1130.
(2) Crabtree, R. H. In The Organometallic Chemistry of the Transition
Metals, 5th ed.; John Wiley & Sons: Hoboken, NJ, 2009; pp 229−231.
(3) Mol, J. C. J. Mol. Catal. A 2004, 213, 39−45.
(4) van Leeuwen, P. W. N. M. In Homogeneous Catalysis:
Understanding the Art; Kluwer Academic Publishers: Dordrecht, The
Netherlands, 2004; pp 101−107.
(5) Schmidt, B. Eur. J. Org. Chem. 2004, 1865−1880.
(6) Otsuka, S.; Tani, K. Transition Metals for Organic Synthesis, 2nd
ed.; Wiley: New York, 2004; Vol. 1, pp 199−209.
(7) Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.; Beller,
M. Science 2002, 297, 1676−1678.
(8) Scarso, A.; Colladon, M.; Sgarbossa, P.; Santo, C.; Michelin, R.
A.; Strukul, G. Organometallics 2010, 29, 1487−1497.
(9) Casey, C. P.; Cyr, C. R. J. Am. Chem. Soc. 1973, 95, 2240−2248.
(10) Manuel, T. A. J. Org. Chem. 1962, 27, 3941−3945.
(11) Alper, H.; LePort, P. C.; Wolfe, S. J. Am. Chem. Soc. 1969, 91,
7553−7554.
(12) Cowherd, F. G.; Von Rosenberg, J. L. J. Am. Chem. Soc. 1969,
91, 2157−2158.
(13) Misono, M.; Grabowski, W.; Yoneda, Y. J. Catal. 1977, 49, 363−
(33) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,
3865.
(34) Zhao, C. Y.; Truhlar, D. G. Theo. Chem. Acc. 2008, 120, 215−
241.
(35) Gottker-Schnetmann, I.; White, P.; Brookhart, M. J. Am. Chem.
̈
Soc. 2004, 126, 1804−1811.
(36) Punji, B.; Emge, T. J.; Goldman, A. S. Organometallics 2010, 29,
2702−2709.
(37) Gottker-Schnetmann, I.; White, P. S.; Brookhart, M. Organo-
̈
metallics 2004, 23, 1766−1776.
(38) Lee, D. W.; Kaska, W. C.; Jensen, C. M. Organometallics 1998,
17, 1−3.
(39) Bondi, A. J. Phys. Chem. 1964, 68, 441−451.
(40) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell
University Press: Ithaca, NY, 1960.
(41) Zhu, K.; Achord, P. D.; Zhang, X.; Krogh-Jespersen, K.;
Goldman, A. S. J. Am. Chem. Soc. 2004, 126, 13044−13053.
(42) Becconsall, J. K.; O’Brien, S. Chem. Commun. 1966, 720−722.
(43) Faller, J. W.; Incorvia, M. J. Inorg. Chem. 1968, 7, 840−842.
(44) Fish, R. W.; Giering, W. P.; Marten, D.; Rosenblum, M. J.
Organomet. Chem. 1976, 105, 101−118.
368.
(14) Casey, C. P.; Cyr, C. R. J. Am. Chem. Soc. 1973, 95, 2248−2253.
13294
dx.doi.org/10.1021/ja301464c | J. Am. Chem. Soc. 2012, 134, 13276−13295