Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C5CC09518B
COMMUNICATION
Journal Name
1
2
J. Das, Chem. Rev. 2011, 111, 4405.
Z. Li, D. Wang, L. Li, S. Pan, Z. Na, C. Y. Tan, S. Q. Yao, J. Am.
Chem. Soc. 2014, 136, 9990; E. Smith, I.Collins, Future Med
Chem 2015, 7, 159.
3
4
5
6
7
8
9
Y. Hatanaka, Y. Sadakane, Curr. Top. Med. Chem. 2002, 2,
271.
F. Kotzybahibert, I. Kapfer, M. Goeldner, Angew. Chem. Int.
Ed. Engl. 1995, 34, 1296.
G. Dorman, Bioorg. Chem. of Biol. Signal Transduction 2001
211, 169; C. A. Gartner, Curr. Med. Chem. 2003, 10, 671.
H. Nakayama, Y. Hatanaka, M. Taki, E. Yoshida, Y. Kanaoka,
Ann. N. Y. Acad. Sci. 1993, 707, 349.
J. Yang, A. E. Clark, I. J. Kozka, S. W. Cushman, G. D. Holman,
J. Biol. Chem. 1992, 267, 10393.
,
J. J. Tate, J. Persinger, B. Bartholomew, Nucleic Acids Res.
1998, 26, 1421.
P. J. A. Weber, A. G. BeckSickinger, J. Pept. Res. 1997, 49
,
375.
10 M. Hashimoto, Y. Hatanaka, Eur. J. Org. Chem. 2008, 2008
2513.
11 L. Dubinsky, B. P. Krom, M. M. Meijler, Bioorg. Med. Chem.
2012, 20, 554.
Fig. 3 (A) Mass spectra of peptides labeled with photolabels 20-22. The MS/MS
analysis and high accuracy mass (< 3 ppm) analysis revealed that the crosslinked
peptide is Val91 - Lys101 (VGLSASTGLYK) residue. (B) Virtual docking of the
native ligand mannose bound to Con A (PDB ID: 3CNA). Note that peptide Val91-
Lys101 (VGLSASTGLYK) (highlighted in purple) has been labeled by the
,
photoaffinity probes 20
-22, which indicates that photoprobes 20-22 are binding
and labeling the protein at the saccharide binding sites of Con A.
12 B. L. Liu, D. S. Kang, J. Chem. Inf. Comput. Sci., 1994, 34, 418;
Y. G. He, C. P. Junk, J. J. Cawley, D. M. Lemal, J. Am. Chem.
Soc. 2003, 125, 5590.
13 J. E. True, T. D. Thomas, R. W. Winter, G. L.Gard, Inorg Chem
2003, 42, 4437.
Computational modeling studies (Fig. 3B) revealed that the
peptide sequence Val91 - Lys101 forms the lip of the mannose
binding pocket in Con A, accounting for the consistent labeling
at this position. The mass spectroscopic analysis has confirmed
that the ambient light stable pyridinyl and pyrimidinyl
photolabels also undergoes the binding site specific labeling
much like the conventional phenyl derived photolabels.
14 J. Brunner, H. Senn, F. M. Richards, J. Biol. Chem. 1980, 255
3313.
,
15 B. Erni, H. G. Khorana, J. Am. Chem. Soc. 1980, 102, 3888; R.
Bonneau, M. T. H. Liu, J. Am. Chem. Soc. 1996, 118, 7229; T.
Akasaka, M. T. H. Liu, Y. Niino, Y. Maeda, T. Wakahara, M.
In Conclusion, ambient light stable photolabels have been
developed by substituting the phenyl ring in 3-trifluoromethyl-
3-phenyldiazirine by a pyridine or pyrimidine ring in 3-position.
Subsequent photoactivation and photoaffinity labeling studies
of these pyridine or pyrimidine photolabels with Con A
revealed that they are as efficient as the conventional 3-
trifluoromethyl-3-phenyldiazirine probes. Furthermore, the
pyridine and pyrimidine photolabels also showed significant
aqueous solubility improvements over the conventional 3-
trifluoromethyl-3-aryldiazirine photolabel. The favorable
physicochemical properties including the improved ambient
light stability of the pyridine and pyrimidine photolabels
Okamura; K. Kobayashi, S. Nagase, J. Am. Chem. Soc. 2000
122, 7134; T. Wakahara, Y. Niino, T. Kato, Y. Maeda, T.
Akasaka, M. T. H. Liu, K. Kobayashi, S. Nagase, J. Am. Chem.
Soc. 2002, 124, 9465.
,
16 R. A. Moss, E. G. Jang, H. R. Kim, G. J. Ho, M. S. Baird,
Tetrahedron Lett. 1992, 33, 1427; R. A. Moss, L. A. Perez, N.
J. Turro, I. R. Gould, N. P. Hacker, Tetrahedron Lett. 1983, 24
,
685; N. Soundararajan, M. S. Platz, J. E. Jackson, M. P. Doyle,
,
S. M. Oon, M. T. H. Liu, S. M. Anand, J. Am. Chem. Soc. 1988
110, 7143.
17 Z. Hasnik, P. Silhar, M. Hocek, Synlett, 2008, 2008, 543.
18 S. S. Husain, S. Nirthanan, D. Ruesch, K. Solt, Q. Cheng, G. D.
Li, E. Arevalo, R. W. Olsen, D. E. Raines, S. A. Forman, J. B.
Cohen, K. W. Miller, J. Med. Chem. 2006, 49, 4818.
render significant advantages over the traditional 3- 19 A. B. Kumar, J. M. Anderson, R. Manetsch, Org. Biomol.
Chem. 2011, 9, 6284; M. Daghish, L. Hennig, M. Findeisen, S.
Giesa, F. Schumer, H. Hennig, A. G. Beck-Sickinger, P. Welzel,
Angew. Chem. Int. Ed. Engl. 2002, 41, 2293.
trifluoromethyl-3-aryldiazirine not only for the actual
photolabeling experiment but also during the synthesis of the
photoaffinity probes. We are currently investigating the
possibility to use pyridine- and pyrimidine-substituted 3-
trifluoromethyl-diazirines for the identification of biological
targets associated to anti-malarial, anti-leishmanial and anti-
bacterial agents.23
20 Y. L. Zhang, G. Burdzinski, J. Kubicki, S. Vyas, C. M. Hadad, M.
Sliwa, O. Poizat, G. Buntinx, M. S. Platz, J. Am. Chem. Soc.
2009, 131, 13784.
21 R. M. Cross, A. Monastyrskyi, T. S. Mukta, J. N. Burrows, D. E.
Kyle, R. Manetsch, J. Med. Chem. 2010, 53, 7076.
22 T. Nagase, E. Nakata, S. Shinkai, I. Hamachi, Chem. Eur. J.
2003, 9, 3660.
23 K. S. Van Horn, W. N. Burda, R. Fleeman, L. N. Shaw, R.
Manetsch, J. Med. Chem. 2014, 57, 3075; R. M. Cross, D. L.
Flanigan, A. Monastyrskyi, A. N. LaCrue, F. E. Sáenz, J. R.
Maignan, T. S. Mutka, K. L. White, D. M. Shackleford, I.
Bathurst, F. R. Fronczek, L. Wojtas, W. C. Guida, S. A.
Charman, J. N. Burrows, D. E. Kyle, R. Manetsch, J. Med.
Chem. 2014, 57, 8860; K. S. Van Horn, X. Zhu,; T. Pandharkar,
S. Yang, B. Vesely, M. Vanaerschot, J. C. Dujardin, S. Rijal, D.
E. Kyle, M. Z. Wang, K. A. Werbovetz, R. Manetsch, J. Med.
Chem. 2014, 57, 5141.
Acknowledgements
This research was funded by the National Institutes of Health
(R01 GM097118). We thank Dr. S. Mahajan and Dr. D.
Ramamoorthy for their guidance with the western blot and
virtual docking studies respectively.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins