ACS Catalysis
Letter
analysis but were unstable upon isolation. We suspect these
intermediates might be a mixture of D. Thereafter, the double
bond could be isomerized in the presence of Brønsted acid,
thereby setting the stage for the intramolecular cyclization. A
Friedel−Crafts cyclization and a subsequent dehydration
reaction provides the final product 3. These two steps might
also be promoted by the Brønsted acid.
(3) See selected reviews: (a) Roy, J.; Jana, A. K.; Mal, D. Tetrahedron
2
̈
012, 68, 6099−6121. (b) Knolker, H. J. Chem. Lett. 2009, 38, 8−13.
(
c) Knolker, H. J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303−4427.
(
(
(
4) Robinson, R. Chem. Rev. 1969, 69, 227−250.
5) Bucherer, H. T.; Seyde, F. J. Prakt. Chem. 1907, 77, 403−413.
6) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R. J.
G. J. Chem. Soc. 1965, 4831−4837.
(
7.
7) Graebe, C.; Ullmann, F. Justus Liebigs Ann. Chem. 1896, 291, 16−
+
We have identified a Cp*Rh(III)/H tandem catalytic
1
system, which allows the facile construction of carbazoles
from indoles. The reaction proceeds under mild reaction
conditions with the generation of H O and N as the only
byproducts. Broad substrate scope, excellent functional group
tolerance, and high yields were observed. Besides, the reaction
is practical and operationally simple to handle. The
benzannulation of pyrroles to indoles is also feasible using
the same protocol. Giving the importance of carbazoles and
indoles in biologically active compound, we expect this protocol
to find many applications.
(8) For selected examples, see: (a) Liu, Z.; Larock, R. C. Org. Lett.
2004, 6, 3739−3741. (b) Kotha, S.; Shah, V. R.; Mandal, K. Adv. Synth.
Catal. 2007, 349, 1159−1172. (c) Ackermann, L.; Althammer, A.;
Mayer, P. Synthesis 2009, 2009 (20), 3493−3503. (d) Hussain, M.;
Tung, D. T.; Langer, P. Synlett 2009, 2009 (11), 1822−1866.
2
2
(
e) Alayrac, C.; Schollmeyer, D.; Witulski, B. Chem. Commun. 2009,
464−1466.
9) See examples on transition metal-catalyzed one-pot synthesis of
1
(
carbazoles from indoles: (a) Ozaki, K.; Zhang, H.; Ito, H.; Lei, A.;
Itami, K. Chem. Sci. 2013, 4, 3416−3420. (b) Verma, A. K.; Danodia,
A. K.; Saunthwal, R. K.; Patel, M.; Choudhary, D. Org. Lett. 2015, 17,
3
658−3661. (c) Shi, L.; Zhong, X.; She, H.; Lei, Z.; Li, F. Chem.
Commun. 2015, 51, 7136−7139.
10) See selected examples: (a) Qiu, Y.; Kong, W.; Fu, C.; Ma, S.
ASSOCIATED CONTENT
■
(
*
S
Supporting Information
Org. Lett. 2012, 14, 6198−6201. (b) Kong, W.; Fu, C.; Ma, S. Chem.
Commun. 2009, 4572−4574. (c) Sureshbabu, R.; Balamurugan, R.;
Mohanakrishnan, A. K. Tetrahedron 2009, 65, 3582−3591. (d) Dhaya-
lan, V.; Clement, J. A.; Jagan, R.; Mohanakrishnan, A. K. Eur. J. Org.
Chem. 2009, 2009, 531−546. (e) Cikotiene, I.; Buksnaitiene, R.;
Sazinas, R. Tetrahedron 2011, 67, 706−717. (f) Jana, A. K.; Mal, D.
Chem. Commun. 2010, 46, 4411−4413.
Experimental details of the synthesis and characterization
1
of starting materials and final compounds; copies of H
NMR and 13NMR spectra of all new compounds (PDF)
(
11) For recent reviews on C−H activation, see: (a) Daugulis, O.;
Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074−1086.
b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110,
AUTHOR INFORMATION
■
*
*
(
6
24−655. (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110,
1147−1169. (d) Newhouse, T.; Baran, P. S. Angew. Chem. 2011, 123,
3422−3435; Angew. Chem., Int. Ed. 2011, 50, 3362−3374.
(e) Ackermann, L. Chem. Rev. 2011, 111, 1315−1345. (f) McMurray,
Author Contributions
These authors contributed equally (J.-Q.W. and Z.Y.).
L.; O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885−1898.
g) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215−1292.
(h) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011,
0, 5068−5083. (i) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F.
‡
(
Notes
4
̈
The authors declare no competing financial interest.
Chem. Soc. Rev. 2011, 40, 4740−4761. (j) Kuhl, N.; Hopkinson, M. N.;
Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236−
10254. (k) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res.
2012, 45, 788−802. (l) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011,
ACKNOWLEDGMENTS
■
We thank Prof. Dr. Frank Glorius for the helpful discussions
and reading of the manuscript. This work was supported by the
1000-Youth Talents Plan”, a Start-up Grant from Sun Yat-sen
University, and the National Natural Science Foundation of
China (81402794, 21472250, 81330077, 81273433).
1
11, 1293−1314. (m) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K.
Angew. Chem., Int. Ed. 2012, 51, 8960−9009. (n) Zhu, C.; Wang, R.;
Falck, J. R. Chem. - Asian J. 2012, 7, 1502−1514. (o) Arockiam, P. B.;
Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879−5918.
“
(
p) White, M. C. Science 2012, 335, 807−809. (q) Wencel-Delord, J.;
Glorius, F. Nat. Chem. 2013, 5, 369−375.
12) (a) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911−936.
b) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods
REFERENCES
(
■
(
(
1) (a) Srinivas, K.; Kumar, C. R.; Reddy, M. A.; Bhanuprakash, K.;
Rao, V. J.; Giribabu, L. Synth. Met. 2011, 161, 96−105. (b) Barea, E.
M.; Zafer, C.; Gultekin, B.; Aydin, B.; Koyuncu, S.; Icli, S.; Santiago, F.
F.; Bisquert, J. J. Phys. Chem. C 2010, 114, 19840−19848.
for Organic Synthesis with Diazo Compounds; Wiley-Interscience: New
York, 1998. (c) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003,
103, 2861−2904. (d) Davies, H. M. L.; Manning, J. R. Nature 2008,
451, 417−424. (e) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L.
Chem. Rev. 2010, 110, 704−724.
(13) For selected examples, see: (a) Chan, W.-W.; Lo, S.-F.; Zhou,
Z.; Yu, W.-Y. J. Am. Chem. Soc. 2012, 134, 13565−13568. (b) Ye, B.;
Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 7896−7899. (c) Hu, F.;
Xia, Y.; Ye, F.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J. Angew. Chem., Int.
Ed. 2014, 53, 1364−1367. (d) Yu, X.; Yu, S.; Xiao, J.; Wan, B.; Li, X. J.
Org. Chem. 2013, 78, 5444−5452. (e) Hyster, T. K.; Ruhl, K. E.; Rovis,
T. J. Am. Chem. Soc. 2013, 135, 5364−5367. (f) Shi, Z.; Koester, D. C.;
Boultadakis-Arapinis, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135,
12204−12207. (g) Jeong, J.; Patel, P.; Hwang, H.; Chang, S. Org. Lett.
2014, 16, 4598−4601. (h) Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X. J. Am.
Chem. Soc. 2015, 137, 1623−1631. (i) Zhang, S.-S.; Jiang, C.-Y.; Wu,
(
2) (a) Senthilkumar, N.; Somannavar, Y. S.; Reddy, S. B.; Sinha, B.
K.; Narayan, G. K. A. S. S.; Dandala, R.; Mukkanti, K. Synth. Commun.
2
1
010, 41, 268−276. (b) Faddeeva, M. D.; Beliaeva, T. N. Tsitologiia
997, 39, 181−208. (c) Stafylas, P. C.; Sarafidis, P. A. Vasc. Health Risk
Manag. 2008, 4, 23−30. (d) Mousset, D.; Rabot, R.; Bouyssou, P.;
Coudert, G.; Gillaizeau, I. Tetrahedron Lett. 2010, 51, 3987−3990.
(
1
1
(
(
e) Rajeshwaran, G. G.; Mohanakrishnan, A. K. Org. Lett. 2011, 13,
418−1421. (f) Crich, D.; Rum thao, S. Tetrahedron 2004, 60, 1513−
516. (g) Knolker, H.-J.; Knoll, J. Chem. Commun. 2003, 1170−1171.
h) Zhang, A.; Lin, G. Bioorg. Med. Chem. Lett. 2000, 10, 1021−1023.
̈
i) Knolker, H. J.; Reddy, K. R. Chemistry and Biology of Carbazole
Alkaloids In The Alkaloids; Cordell, G. A., Ed.; Academic Press:
Amsterdam, 2008; Vol. 65, pp 195−283.
6
456
ACS Catal. 2015, 5, 6453−6457