Please do not adjust margins
Green Chemistry
Page 4 of 5
DOI: 10.1039/C6GC02008A
COMMUNICATION
Journal Name
12.
13.
S. Kochius, Y. Ni, S. Kara, S. Gargiulo, J. Schrader, D.
Holtmann and F. Hollmann, ChemPlusChem, 2014, 79
1554-1557.
J. B. Jones and K. E. Taylor, J. Chem. Soc., Chem.
Commun., 1973, 205 - 206.
V. Massey, J. Biol. Chem., 1994, 269, 22459-22462.
D. Holtmann and F. Hollmann, ChemBioChem, 2016,
17, 1391-1398.
M. De La Rosa, J. Navarro and M. Roncel, App.
Biochem. Biotechnol., 1991, 30, 61-81.
S. Kara, D. Spickermann, J. H. Schrittwieser, A.
Weckbecker, C. Leggewie, I. W. C. E. Arends and F.
of energy efficiency as futile wavelengths and heat generation
are omitted. Taking together the lower power consumption
with the increased catalytic activity of the LED system a more
than 90% decrease of energy consumption (and corresponding
CO2 emissions) can be achieved. Furthermore, the significant
thermal effect of the white light bulb also necessitates
additional cooling of the reaction mixture, which can be
reduced or even omitted in case of the LEDs.
,
14.
15.
16.
17.
Conclusions
Today, photocatalysis is in focus of catalysis research.21-23
Comparably few studies deal with photocatalysis to promote
biocatalytic reactions, a ‘combination of two intrinsically green
technologies’.24
Hollmann, ACS Catal., 2013, 3, 2436-2439.
R. A. Sheldon, Chem. Comm., 2008, 3352-3365.
Y. Ni, D. Holtmann and F. Hollmann, ChemCatChem,
2014, 6, 930-943.
J. Schrittwieser, F. Coccia, S. Kara, B. Grischek, W.
Kroutil, N. d'Alessandro and F. Hollmann, Green Chem.,
2013, 15, 3318–3331.
R. Brimioulle, D. Lenhart, M. M. Maturi and T. Bach,
Angew. Chem. Int. Ed., 2015, 54, 3872-3890.
K. L. Skubi, T. R. Blum and T. P. Yoon, Chem. Rev., 2016,
116, 10035-10074.
18.
19.
20.
However, neither biocatalysis nor photocatalysis are
environmentally sustainable per se. A (self-)critical evaluation
of the possible environmental impact is necessary to
substantiate ‘green claims’ and to identify bottlenecks as a
basis for improved reaction setups en route to truly
sustainable procedures.
21.
22.
23.
24.
R. N. Perutz and B. Procacci, Chem. Rev., 2016, 116
8506-8544.
J. A. Maciá-Agulló, A. Corma and H. Garcia, Chem. Eur.
J., 2015, 21, 10940–10959.
,
In this study, we have demonstrated that simple LEDs are well-
suited to substitute conventional light sources in flavin-based
NAD+ regeneration systems to promote dehydrogenase-
catalysed oxidation reactions. Particularly, the significantly
deceased energy demand of LED systems make it attractive
envisioning environmentally acceptable syntheses.
Notes and references
1.
K. Drauz, H. Groeger and O. May, eds., Enzyme
Catalysis in Organic Synthesis, Wiley-VCH, Weinheim,
2012.
2.
3.
4.
5.
K. Faber, Biotransformations in Organic Chemistry,
Springer, Berlin, 6th edn., 2011.
F. Hollmann, I. W. C. E. Arends, K. Buehler, A. Schallmey
and B. Buhler, Green Chem., 2011, 13, 226-265.
W. Kroutil, H. Mang, K. Edegger and K. Faber, Curr.
Opin. Chem. Biol., 2004, 8, 120-126.
S. Kara, J. H. Schrittwieser, F. Hollmann and M. B.
Ansorge-Schumacher, Appl. Microbiol. Biotechnol.,
2014, 98, 1517–1529.
6.
7.
8.
9.
C. Holec, K. Neufeld and J. Pietruszka, Adv. Synth.
Catal., 2016, 358, 1810-1819.
B. R. Riebel, P. R. Gibbs, W. B. Wellborn and A. S.
Bommarius, Adv. Synth. Catal., 2002, 344, 1156-1168.
R. Jiang and A. S. Bommarius, Tetrahedron Asymm.,
2004, 15, 2939-2944.
J. T. Park, J.-I. Hirano, V. Thangavel, B. R. Riebel and A.
S. Bommarius, J. Mol. Catal. B: Enzym., 2011, 71, 159-
165.
10.
11.
S. Aksu, I. W. C. E. Arends and F. Hollmann, Adv. Synth.
Catal., 2009, 351, 1211-1216.
S. Gargiulo, I. W. C. E. Arends and F. Hollmann,
ChemCatChem, 2011, 3, 338-342.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins