1226
J. Yuan et al. / Tetrahedron Letters 53 (2012) 1222–1226
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. For recent examples of oxacalixarenes, see: (a) Chambers, R. D.; Khalil, A.;
Murray, C. B.; Sandford, G.; Batsanov, A.; Howard, J. A. K. J. Fluorine Chem. 2005,
126, 1002–1008; (b) Wang, M.-X.; Yang, H.-B. J. Am. Chem. Soc. 2004, 126,
15412–15422; (c) Chen, Y.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. J. Org. Chem.
2010, 75, 3786–3796; (d) Wang, Q.-Q.; Wang, D.-X.; Yang, H.-B.; Huang, Z.-T.;
Wang, M.-X. Chem. Eur. J. 2010, 16, 7265–7275; (e) Naseer, M. M.; Wang, D.-X.;
Zhao, L.; Huang, Z.-T.; Wang, M.-X. J. Org. Chem. 2011, 76, 1804–1813; (f) Naseer,
M. M.; Wang, D.-X.; Wang, M.-X. Heterocycles 2011, 84, 1375–1382; (g) Katz, J.
L.; Selby, K. J.; Conry, R. R. Org. Lett. 2005, 7, 3505–3507; (h) Wackerly, J. W.;
Meyer, J. M.; Crannell, W. C.; King, S. B.; Katz, J. L. Macrocycles 2009, 42, 8181–
8186; (i) Rossom, W. V.; Ovaere, M.; Meervel, L. V.; Dehaen, W.; Maes, W. Org.
Lett. 2009, 11, 1681–1684; (j) Rossom, W. V.; Robeyns, K.; Ovaere, M.; Meervelt,
L. V.; Dehaen, W.; Maes, W. Org. Lett. 2011, 13, 126–129; (k) Akagi, S.; Yasukawa,
Y.; Kobayashi, K.; Konishi, H. Tetrahedron 2009, 65, 9983–9988; (l) Ma, M. L.; Li,
X. Y.; Wen, K. J. Am. Chem. Soc. 2009, 131, 8338–8339; (m) Zhang, C.; Chen, C.-F. J.
Org. Chem. 2007, 72, 3880–3888; (n) Hu, S.-Z.; Chen, C.-F. Chem. Commun. 2010,
46, 4199–4201.
2. For recent examples of azacalixarenes, see: (a) Ito, A.; Ono, Y.; Tanaka, K. Angew.
Chem., Int. Ed. 2000, 39, 1072–1075; (b) Fukushima, W.; Kanbara, T.; Yamamoto,
T. Synlett 2005, 2931–2934; (c) Wang, Q.-Q.; Wang, D.-X.; Ma, H.-W.; Wang, M.-
X. Org. Lett. 2006, 8, 5967–5970; (d) Wang, M.-X. Chem. Commun. 2008, 4541–
4551; (e) Yao, B.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Chem. Commun. 2009,
2899–2901; (f) Wang, L.-X.; Zhao, L.; Wang, D.-X.; Wang, M.-X. Chem. Commun.
2011, 47, 9690–9692; (g) Wang, M.-X. Acc. Chem. Res. 2011. doi:10.1021/
ar200108c; (h) Yasukawa, Y.; Kobayashi, K.; Konishi, H. Tetrahedron Lett. 2009,
50, 5130–5134; (i) Touil, M.; Lachkar, M.; Siri, O. Tetrahedron Lett. 2008, 49,
7250–7252; (j) Haddoub, R.; Touil, M.; Raimundo, J. M.; Siri, O. Org. Lett. 2010,
12, 2722–2725; (k) Raimundo, J.-M.; Chen, Z. R.; Siri, O. Chem. Commun. 2011, 47,
10410–10412; (l) Katz, J. L.; Tschean, B. A. Org. Lett. 2010, 12, 4300–4303; (m)
Xue, M.; Chen, C.-F. Org. Lett. 2009, 11, 5294–5297; (n) Xue, M.; Chen, C.-F. Chem.
Commun. 2011, 2318–2320.
3. (a) Wang, D.-X.; Zheng, Q.-Y.; Wang, Q.-Q.; Wang, M.-X. Angew. Chem., Int. Ed.
2008, 47, 7485–7488; (b) Gong, H.-Y.; Zheng, Q.-Y.; Zhang, X.-H.; Wang, D.-X.;
Wang, M.-X. Org. Lett. 2006, 8, 4895–4898; (c) Gong, H.-Y.; Zhang, X.-H.; Wang,
D.-X.; Ma, H.-W.; Zheng, Q.-Y.; Wang, M.-X. Chem. Eur. J. 2006, 12, 9262–9275;
(d) Gong, H.-Y.; Wang, D.-X.; Xiang, J.-F.; Zheng, Q.-Y.; Wang, M.-X. Chem. Eur. J.
2007, 13, 7791–7802.
Figure 5. Variable-temperature 1H NMR experiments of compound 4a in CDCl3
solution.
solution at 298 K. When temperature was elevated from 298 to
319 K for every 3 K, the proton signal moved upfield gradually
and finally was enfolded into the neighboring doublet. This phe-
nomenon might attribute to the conformational conversion of
compound 4a in solution (See S10–S14 of Supplementary data
for details).
In summary, a number of unsymmetrical N and/or O-bridged
calixarene derivatives have been synthesized via general and
good-yield fragment coupling strategy. And we obtained the crys-
tal structure of 1a which can form a molecular capsule by two di-
mers with C–Hꢀ ꢀ ꢀN and C–Hꢀ ꢀ ꢀO quadruple hydrogen bonds. And it
has the inclusion ability toward solvent molecules. Variable-tem-
perature 1H NMR experiments of compound 4a in CDCl3 solution
have been carried out, and the chemical shift of phenylene proton
signal Ha of 4a might demonstrate the conformational conversion
of compound 4a in solution. Progress in the recognition ability of
these compounds is still underway. The work will be reported in
due course.
4. Zhu, Y.-P.; Yuan, J.-J.; Li, Y.-T.; Gao, M.; Cao, L.-P.; Ding, J.-Y.; Wu, A.-X. Synlett
2011, 52–56.
5. (a) Yan, C.-J.; Yan, H.-J.; Xu, L.-P.; Song, W.-G.; Wan, L.-J.; Wang, Q.-Q.; Wang, M.-
X. Langmuir 2007, 23, 8021–8027; (b) Yao, B.; Wang, D.-X.; Gong, H.-Y.; Huang,
Z.-T.; Wang, M.-X. J. Org. Chem. 2009, 74, 5361–5368; (c) Wu, J.-C.; Wang, D.-X.;
Huang, Z.-T.; Wang, M.-X. Tetrahedron Lett. 2009, 50, 7209–7212; (d) Clayden, J.;
Rowbottom, S. J. M.; Hutchings, M. G.; Ebenezer, W. J. Tetrahedron Lett. 2009, 50,
3923–3925; (e) Tian, X.-H.; Chen, C.-F. Org. Lett. 2010, 12, 524–527.
6. (a) Thurston, J. T.; Dudlet, J. R.; Kaiser, D. W.; Hechenbleikner, I.; Schaefer, F. C.;
Holm-Hansen, D. J. Am. Chem. Soc. 1951, 73, 2981–2983; (b) Blotny, G.
Tetrahedron Lett. 2006, 62, 9507–9522.
7. Crystal structure data for compound 1a: CCDC 850834.
chemical formula weight: 1342.23, tetragonal space group I4(1)cd, a = 28.8658
(2), b = 28.8658 (2), c = 14.754 (2) Å; = 90.000°, b = 90.000°, = 90.000°,
= 0.390 mmꢁ1
C63H41Cl7N12O8,
Acknowledgments
a
c
U = 12294(2) Å3, T = 298 (2) K, Z = 8, DC = 1.450 mg/m3,
l
,
k = 0.71073 Å, F(000) 5488, crystal size 0.20 ꢂ 0.20 ꢂ 0.10 mm3, 5374
independent reflections [R(int) = 0.1147], reflections collected 31488,
refinement method: full-matrix least-squares on F2: goodness-of-fit on F2
We would like to thank the National Natural Science Founda-
tion of China (Grant 20902035 and 201032001) for their generous
financial support and the research was supported in part by the
PCSIRT (No. IRT0953). We are also grateful to Xianggao Meng for
his help with X-ray diffraction analysis.
1.104, final R indices [I >2r(I)], R1 = 0.0647, wR2 = 0.1392, largest diff. peak and
hole 0.191 Åꢁ3 and ꢁ0.193 e Åꢁ3
.