Notes and references
z X-Ray diffraction was performed on a STOE Stadi P using Cu-Ka
radiation and an image plate detector covering an angle range of 801.
physisorption isotherms were determined on a Micromeritics
Tristar instrument at 77 K. Leached samples were outgassed under
1
N
2
N
N
2
2
flow at 363 K during 12 h. Calcined samples were outgassed under
flow at 573 K during 12 h. The mesopore size distribution was
calculated from the desorption branch using the Barrett–Joyner–
Halenda (BJH) method. Scanning electron microscopy (SEM) was
performed on a Philips SEM XL30 FEG instrument. The samples
were gold-plated prior to imaging. HRTEM images were taken using a
CM20 electron microscope, operated at 200 kV.
Fig. 4 Representative SEM micrograph of leached COK-11.
1
C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and
J. S. Beck, Nature, 1992, 359, 710.
2
,4,5
observed with MCM-41 type materials.
3
After removal of
the organics through leaching, the Q content decreased to
2 X. S. Zhao, F. Audsley and G. Q. Lu, J. Phys. Chem. B, 1998, 102,
4143.
4
0% in favour of Q , indicating improved silicate connectivity.
4
3
K. A. Koyano, T. Tatsumi, Y. Tanaka and S. Nakata, J. Phys.
Chem. B, 1997, 101, 9436.
4 R. Ryoo and S. Jun, J. Phys. Chem. B, 1997, 101, 317.
3
This percentage of Q was maintained upon calcination at
2
9
73 K. In Si MAS NMR of COK-11 calcined at 898 K the
5
3
4
5 D. Das, C.-M. Tsai and S. Cheng, Chem. Commun., 1999, 473.
6
7
Q and Q signals broadened and could not be deconvoluted.
Scanning electron microscopy (SEM) on leached COK-11
material revealed flaky particle morphology, different from
K. J. Edler and J. W. White, Chem. Mater., 1997, 9, 1226.
L. Chen, T. Horiuchi, T. Mori and K. Maeda, J. Phys. Chem. B,
1999, 103, 1216.
1
1
8
9
Y. Liu, W. Zhang and T. J. Pinnavaia, J. Am. Chem. Soc., 2000,
122, 8791.
typical MCM-41 (Fig. 4).
Summarizing, the characterisation of COK-11 using Si
3
and C MAS NMR, N physisorption and XRD and TEM
2
9
´
rquez-Alvarez, J. Pe
J. Agu
´
ndez, I. Dı
´
az, C. Ma
´
´
rez-Pariente and
1
2
E. Sastre, Chem. Commun., 2003, 150.
10 R. Mokaya, W. Zhou and W. Jones, Chem. Commun., 1999, 51.
revealed many similarities between COK-11 and MCM-41.
The hexagonal ordering of COK-11 materials is comparable to
optimised MCM-41 materials prepared at a constant pH. BET
surface area and pore volume of COK-11 compare to the
11 R. Mokaya, J. Mater. Chem., 2002, 12, 3027.
12 R. Mokaya, Chem. Commun., 2001, 933.
13 R. Mokaya, J. Phys. Chem. B, 1999, 103, 10204.
14 J. Yu, J.-L. Shi, L.-Z. Wang, M.-L. Ruan and D.-S. Yan, Mater.
Lett., 2001, 48, 112.
1
,3–8,11–15,19,20
highest values found in literature.
However,
1
5 W. Lin, Q. Cai, W. Pang, Y. Yue and B. Zou, Microporous
Mesoporous Mater., 1999, 33, 187.
important differences between COK-11 and MCM-41 exist:
The silicate framework of as-synthesised COK-11 has a low
connectivity compared to hydrothermally stabilized MCM-41
1
6 W. Guo, L. Huang, P. Deng, Z. Xue and Q. Li, Microporous
Mesoporous Mater., 2001, 44–45, 427.
17 S. P. B. Kremer, C. E. A. Kirschhock, A. Aerts, K. Villani,
5
,11–13,15
materials
(ESIw). The pore wall thickness of COK-11
J. A. Martens, O. I. Lebedev and G. Van Tendeloo, Adv. Mater.,
2
is exceptionally thin (ESIw) and the mesopore diameter in
COK-11 is more uniform than in MCM-41. According to
SEM, COK-11 consists of particles with an ill-defined sheet-
like morphology of several mm, whereas MCM-41 tends to
adopt more rounded shapes. Room-temperature, hydro-
thermal and thermal stability of the COK-11 material are
superior compared to MCM-41 materials.
003, 15, 1705.
18 S. P. B. Kremer, C. E. A. Kirschhock, A. Aerts, C. A. Aerts,
K. J. Houthoofd, P. J. Grobet, P. A. Jacobs, O. I. Lebedev, G. Van
Tendeloo and J. A. Martens, Solid State Sci., 2005, 7, 861.
1
9 Z. Zhang, Y. Han, F.-S. Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu,
Z. Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei, J. Am.
Chem. Soc., 2001, 123, 5014.
2
2
0 R. Mokaya, Angew. Chem., Int. Ed., 1999, 38, 2930.
1 A. Galarneau, M. Nader, F. Guenneau, F. Di Renzo and
A. Gedeon, J. Phys. Chem. C, 2007, 111, 8268.
To conclude, COK-11 is a pure-silica thin-walled hexagonally
ordered mesoporous material with unusual stability, given its
3
thin walls and high Q silicon content. Although no evidence
2
2 K. Cassiers, T. Linssen, M. Mathieu, M. Benjelloun,
K. Schrijnemakers, P. Van Der Voort, P. Cool and
E. F. Vansant, Chem. Mater., 2002, 14, 2317.
for MTN connectivity or piperidine incorporation in the walls
was found, the unusual high stability of COK-11 is reminiscent
of MTN, which originates from the same clear solution
upon heating in absence of CTAB. Further research will be
necessary to reveal the nature of the unique COK-11 pore
walls. The existence of a memory effect of the clear solution
particles used as silica source is a key question that remains to
be addressed.
2
3 D. Zhao, Q. Huo, J. Feng, F. Chmelka and G. D. Stucky, J. Am.
Chem. Soc., 1998, 120, 6024.
24 K. Wan, Q. Liu and C. Zhang, Mater. Lett., 2003, 57, 3839.
2
2
5 S.-C. Shen and S. Kawi, J. Phys. Chem. B, 1999, 103, 8870.
6 H. Xu, J. Guan, S. Wu and Q. Kan, J. Colloid Interface Sci., 2009,
329, 346.
7 X. Liu, H. Sun and Y. Yang, J. Colloid Interface Sci., 2008, 319, 377.
2
28 T. R. Gaydhankar, V. Samuel, R. K. Jha, R. Kumar and
P. N. Joshi, Mater. Res. Bull., 2007, 42, 1473.
9 P. B. Amama, S. Lim, D. Ciuparu, L. Pfefferle and G. L. Haller,
2
P. V. acknowledges the Flemish IWT for a PhD grant; A. A.
the Flemish FWO for a Postdoctoral grant. The work was
supported by the Flemish Government via long term structural
funding (Methusalem) and Concerted Research Action (GOA)
and by the Belgian Government via IAP-PAI. S. Aldea
Microporous Mesoporous Mater., 2005, 81, 191.
30 H. Zhang and Y. Li, Powder Technol., 2008, 183, 73.
31 S. Habib, F. Launay, S. Laforge, J.-D. Comparot, A.-C. Faust,
Y. Millot, T. Onfroy, V. Montouillout, P. Magnoux, J.-L. Paillaud
and A. Ge
2 H. Gies and B. Marler, Zeolites, 1992, 12, 42.
33 M. Kruk, M. Jaroniec and A. Sayari, J. Phys. Chem. B, 1997, 101, 583.
deon, Appl. Catal., A, 2008, 344, 61.
´ ´
3
1
3
29
performed SEM and K. Houthoofd C and Si MAS NMR.
This journal is ꢂc The Royal Society of Chemistry 2009
Chem. Commun., 2009, 4287–4289 | 4289