Azacrown calixarenes as membrane carriers
Russ.Chem.Bull., Int.Ed., Vol. 64, No. 4, April, 2015
907
was a solution of the carrier (0.02 mmol) in oꢀnitrophenyl octyl
ether (0.02 mL) impregnated into the pores of polytetrafluoroꢀ
ethylene membranes (SigmaꢀAldrich, diameter 25 mm, pore sizes
0.2 m). The appliance was similar to that described in the
work.28 The source phase was a 1 M solution of the salt. The
concentration of the substrate in the receiving phase (distilled
water, V = 400 mL) was determined measuring the conductivity
of the solution.
ether moieties into the structure of ligands 1—3 instead of
tetra ester derivatives 4 also increases the flow of cobalt
and nickel chlorides, however, only an insignificant inꢀ
crease in the flow is observed for copper and magnesium
chlorides. The use of the disubstituted calix[4]arene 2 as
a carrier gave the results similar to those obtained for tetraꢀ
substituted calixarene 1, hence, a possible formation of
the sandwich complex can be suggested.
This work was financially supported by the Ministry of
Education and Science of the Russian Federation (State
Assignment No. 4.560.2014ꢀK).
In conclusion, we showed that calixarenes substituted
at the lower rim with the Nꢀmethoxycarbonylmonoazaꢀ
12ꢀcrownꢀ4 ether fragments can be used for the memꢀ
brane transport, with diꢀ and tetrasubstituted calix[4]ꢀ
arenes being the most efficient for the transport of cobalt
and nickel chlorides.
References
1. X. Ji, J. Li, J. Chen, X. Chi, K. Zhu, X. Yan, M. Zhang,
F. Huang, Macromolecules, 2012, 45, 6457.
2. M. Zhang, K. Zhu, F. Huang, Chem. Commun., 2010,
46, 8131.
3. S. Ok Kang, J. M. Llinares, V. W. Dayc, K. BowmanꢀJames,
Chem. Soc. Rev., 2010, 39, 3980.
4. B. V. K. J. Schmidt, M. Hetzer, H. Ritter, C. BarnerꢀKoꢀ
wollik, Prog. Polym. Sci., 2014, 39, 235.
5. N. Zafar, H. Fessi, A. Elaissari, Int. J. Pharmaceut., 2014,
461, 351.
Experimental
Reaction progress and individuality of synthesized comꢀ
pounds were monitored by thinꢀlayer chromatography on Silufol
UVꢀ254 plates in the systems chloroform, chloroform—ethanol
(9 : 1), ethyl acetate—hexane (1 : 1), (1 : 2), (1 : 5). 1H NMR
spectra were recorded on a spectrophotometer Bruker DRXꢀ400
(400 MHz) with Me4Si as an internal standard. Elemental analꢀ
ysis was performed on a PE 2400 Series II CHNSꢀanalyzer.
Mass spectra were recorded on a Varian MAT 311A spectroꢀ
meter (electron impact) at 70 eV of ionizing voltage with direct
injection of samples into the source of ions. Conductivity of
solutions was measured on a Radelkis OKꢀ102 conductometer.
Solvents were purified according to the standard procedures.
Melting points were not corrected.
Compounds 2,22,23 4,24,25 5,26 6,24 and 727 were synthesized
according to the described procedures.
5,11,17,23ꢀTetraꢀtertꢀbutylꢀ25,26,2728ꢀtetra((1,4,7ꢀtriꢀ
oxaꢀ10ꢀazacyclodecꢀ10ꢀyl)carbonylmethoxy)calix[4]arene (1)
was obtained similarly to calixarene 2. The yield was 95%. B.p.
6. T. Nabeshima, S. Akine, Chem. Rec., 2008, 8, 240.
7. M. A. Qazi, I. Qureshi, S. Memon, J. Fluoresc., 2011, 21, 1231.
~
8. N. Basílio, Á. Pineiro, J. P. Da Silva, L. GarcíaꢀRío, J. Org.
Chem., 2013, 78, 9113.
9. B. Tabakci, O. Alici, I. Karatas, Talanta, 2013, 106, 92.
10. A. A. Abramov, A. N. Vasiliev, O. V. Dubovaya, V. V. Kovaꢀ
lev, I. M. Vatsouro, Mendeleev Commun., 2012, 22, 260.
11. Y. Yang, X. Cao, D. W. Purkiss, J. F. Cannon, R. A. Bartsch,
Tetrahedron, 2012, 68, 2233.
12. N. Y. Edwards, A. L. Possanza, Supramol. Chem., 2013,
25, 446.
13. N. Y. Edwards, F. Liub, G. Chen, Supramol. Chem., 2013,
25, 631.
14. S. Licen, V. Bagnacani, L. Baldini, A. Casnati, F. Sansone,
M. Giannetto, P. Pengo, P. Tecilla, Supramol. Chem., 2013,
25, 481.
15. P. Curínová, M. Pojarová, J. Budka, K. Lang, I. Stibor,
P. Lhoták, Tetrahedron, 2010, 66, 8047.
16. B. S. Creaven, D. F. Donlon, J. McGinley, Coord. Chem.
Rev., 2009, 253, 893.
17. R. Ludwig, K. Kunogi, N. Dung, S. Tachimori, Chem. Comꢀ
mun., 1997, 1985.
18. J. S. Kim, S. K. Kim, J. W. Ko, E. T. Kim, S. H. Yu,
M. H. Cho, S. G. Kwon, E. H. Lee, Talanta, 2000, 52, 1143.
19. M. Sugiura, Sep. Sci. Techol., 1990, 25, 1189.
20. M. Mulder, Basic Prinsiples of Membrane Technology, 2nd ed.,
Kluwer Acad. Publ., Derdrecht—Boston—London, 1996,
564 pp.
21. B. Mokhtari, K. Pourabdollah, J. Chin. Chem. Soc., 2012,
59, 1058.
22. E. A. Alekseeva, S. S. Basok, I. M. Rakipov, A. V. Mazepa,
A. I. Gren´, Russ. J. Org. Chem. (Engl. Transl.), 2013, 49,
1035 [Zh. Org. Khim., 2013, 49, 1050].
1
278—280 C. H NMR (CDCl3), : 6.97 (s, 8 H, 8 ArH); 5.02,
3.39 (both d, 8 H, 4 ArCH2Ar, J = 13.8 Hz); 4.81 (s, 8 H,
4 OCH2C=O); 4.00 (br.t, 8 H, OCH2, J = 4.8 Hz); 3.80 (br.t,
8 H, OCH2, J = 4.5 Hz); 3.66 (br.t, 8 H, OCH2, J = 4.8 Hz);
3.55—3.64 (m, 40 H, OCH2, NCH2); 1.21 (s, 36 H, 4 (CH3)3C).
MS (EI, 70 eV), m/z (Irel (%)): 1511 (12), 1510 (27), 1509 (30)
[M]+. Found (%): C, 66.47; H, 8.32; N, 3.65. C84H124N4O20
Calculated (%): C, 66.82; H, 8.28; N, 3.71.
5,11,17,23ꢀTetraꢀtertꢀbutylꢀ25ꢀ(1,4,7ꢀtrioxaꢀ10ꢀazacycloꢀ
decꢀ10ꢀyl)carbonylmethoxyꢀ26,27,28ꢀtrihydroxycalix[4]arene
(3) was obtained similarly to calixarene 2. The yield was 92%.
B.p. 295—297 C. 1H NMR (CDCl3), : 10.25 (s, 1 H, OH); 9.33
(s, 2 H, OH); 7.11 (s, 2 H, ArH); 7.08 (s, 4 H, ArH); 7.00 (s, 2 H,
ArH); 4.90 (s, 2 H, OCH2C=O); 4.50 (d, 2 H, ArCH2Ar,
J = 13.8 Hz); 4.31 (d, 2 H, ArCH2Ar, J = 13.8 Hz); 4.02 (br.t, 2 H,
OCH2, J = 4.8 Hz); 3.80 (br.t, 2 H, OCH2, J = 4.8 Hz); 3.67
(br.t, 2 H, OCH2, J = 4.7 Hz); 3.55—3.64 (m, 10 H, OCH2,
NCH2); 1.25 (s, 9 H, (CH3)3C); 1.22 (s, 18 H, (CH3)3C); 1.05
(s, 9 H, (CH3)3C). MS (EI, 70 eV), m/z (Irel (%)): 865 (50), 864
(85) [M]+. Found (%): C, 74.77; H, 8.75; N, 1.65. C54H73NO8.
Calculated (%): C, 75.05; H, 8.51; N, 1.62.
.
Studies of transport through a liquid membrane. The flow
through the liquid impregnated membranes was measured in
a glass vessel, using a platinum electrode. The liquid membrane
23. E. A. Alekseeva, S. S. Basok, A. V. Mazepa, A. P. Luk´yaꢀ
nenko, O. V. Snurnikova, A. I. Gren´, Russ. J. Gen. Chem.