C.G.L. Junior et al. / Bioorganic Chemistry 38 (2010) 279–284
283
4.1.2.10. 2-[Hydroxy(pyridin-3-yl)methyl]acrylonitrile (10) [36]. 1H
NMR (CDCl3, 200 MHz): d 8.41 (m, 2H); 7.79 (ddd, J = 7.8/1.8/
1.6 Hz, 1H); 7.33 (dd, J = 8.0 Hz, 1H); 6.05 (d, J = 1.0 Hz, 1H); 6.17
calculated from the ratio of OD readings in wells with compounds
versus wells without compounds  100. The concentration which
inhibits 50% of growth (IC50) was determined by regression analy-
sis using the SPSS 8.0 software for Windows. All experiments were
done at least three times and each experiment was performed in
triplicate.
(d, J = 1.2, 1H); 5.33 (s, 1H). 13C NMR (CDCl3, 100 MHz)
d
71.51(1C), 116.69(1C), 124.09(1C), 125.99(1C), 130.39(1C),
135.04(1C), 136.13(1C), 147.40(1C), 148.94(1C).
4.1.2.11. 2-[Hydroxy(pyridin-4-yl)methyl]propanoate (11) [56]. 1H
NMR (CDCl3, 200 MHz) d (ppm): 8.47 (dd, J = 4.6/1.6 Hz, 2H);
7.30 (dd, J = 4.6/1.6 Hz, 2H); 5.89 (s, 1H); 5.51 (s, 1H); 3.70 (s,
1H). 13C NMR (CDCl3, 50 MHz) d (ppm): 52.09(1C), 71.86(1C),
121.49(1C), 127.07(1C), 140.92(1C), 149.32(1C), 151.02(1C),
166.29(1C).
Acknowledgment
This work has been supported by CNPq, CAPES, FAPESQ-PB.
References
[1] J. Guillon, I. Forfar, M. Mamani-Matsuda, V. Desplat, M. Saliège, D. Thiolat, S.
Massip, A. Tabourier, J.-M. Léger, B. Dufaure, G. Haumont, C. Jarry, D. Mossalayi,
Bioorg. Med. Chem. 15 (2007) 194.
4.1.2.12. 2-[Hydroxy(pyridin-4-yl)methyl]acrylonitrile (12) [36]. 1H
NMR (CDCl3, 200 MHz): d 8.50 (d, J = 6 Hz, 2H); 7.36 (d, J = 5.8 Hz,
2H); 5.31(s, 1H); 6.16 (d, J = 0.6 Hz, 1H); 6.06 (s, 1H). 13C NMR
(CDCl3, 50 MHz) d 72.48(1C), 116.50(1C), 121.42(2C), 125.67(1C),
130.63(1C), 149.14(1C), 149.58(2C).
[2] B.L. Herwaldt, Lancet 354 (1999) 1191.
[3] S.L. Croft, G.H. Coombs, Trends Parasitol. 19 (2003) 502.
[4] P. Desjeux, Comp. Immunol. Microbiol. Infect. Diseases 27 (2004) 305.
[5] R.N. Coler, S.G. Reed, Trends Parasitol. 21 (2005) 244.
[6] J. Mishra, A. Saxena, S. Singh, Curr. Med. Chem. 14 (2007) 1153.
[7] S. Raht, A. Trivellin, T.R. Imbrunito, D.M. Tomazela, M.N. Jesus, P.C. Marzal,
H.F.A. Junior, A.G. Tempone, Quim. Nova 26 (2003) 550.
[8] M. Chen, S.B. Christensen, T.G. Theander, A. Kharazmi, Antimicrob. Agents
Chemother. 38 (1994) 1339.
[9] E.C. Torres-Santos, D.L. Moreira, M.A.C. Kaplan, M.N. Meirelles, B. Rossi-
Bergmann, Antimicrob. Agents Chemother. 43 (1999) 1234.
[10] M.F. Muzitano, E.A. Cruz, A.P. Almeida, S.A.G. Da-Silva, C.R. Kaiser, C. Guette, B.
Rossi-Bergmann, S.S. Costa, Planta Med. 72 (2006) 81.
4.1.2.13. 2-[Hydroxy(naphth-2-yl)methyl]propanoate (13) [41,57]. 1H
NMR (200 MHz, CDCl3) d = 7.80 (m, 4H), 7.45 (m, 3H), 6.36 (s, 1H),
5.87 (s, 1H), 5.71 (s, 1H), 3.69 (s, 3H), 3.26 (bs, 1H); 13C NMR
(50.0 MHz, CDCl3) d = 166.5 (C), 141.6 (C), 138.3 (C), 132.9 (C),
132.73 (C), 127.97 (CH), 127.90 (CH), 127.4 (CH), 126.1 (CH2),
125.9 (CH), 125.8 (CH), 125.3 (CH), 124.3 (CH), 73.0 (CH), 51.7 (CH3).
[11] S. Martínez-Luis, G. Della-Togna, P.D. Coley, T.A. Kursar, W.H. Gerwick, L.J.
Cubilla-Rios, Nat. Prod. 71 (2008) 2011.
4.1.2.14. 2-[Hydroxy(naphth-2-yl)methyl]acrylonitrile (14) [41]. 1H
NMR (CDCl3, 200 MHz): d 7.42–7.89 (m, 7H). 6.15 (d, J = 1.4 Hz,
2H); 6.06 (d, J = 1.6 Hz, 2H); 5.46(d, J = 3.8 Hz, 1H); 2.50(d,
J = 3.8 Hz, 1H). 13C NMR (CDCl3, 50 MHz): d = 137.8 (C), 134.9 (C),
134.5 (C), 131.6 (CH2), 130.4 (CH), 129.6 (CH), 129.18 (CH),
129.16 (CH), 128.0 (CH), 127.5 (CH), 127.4 (CH), 125.2 (CH),
118.4 (C), 75.9 (CH).
[12] M. Aveniente, E.F. Pinto, L.S. Santos, B. Rossi-Bergmann, L.E.S. Barata, Bioorg.
Med. Chem. 15 (2007) 7337.
[13] K.S. Charret, R.F. Rodrigues, A.M.R. Bernardino, A.O. Gomes, A.V. Carvalho,
M.M. Canto-Cavalheiro, L. Leon, V.F. Amaral, Am. J. Trop. Med. Hyg. 80 (2009)
568.
[14] J.C. Aponte, D. Castillo, Y. Estevez, G. Gonzalez, J. Arevalo, G.B. Hammonda, M.
Sauvain, Biorg. Med. Chem. Lett. 20 (2010) 100.
[15] P.F. Torrence, X. Fan, X. Zhanga, P.M. Loiseau, Biorg. Med. Chem. Lett. 16 (2006)
5047.
[16] S.B. Ferreira, M.S. Costa, N. Boechat, R.J.S. Bezerra, M.S. Genestra, M.M. Canto-
Cavalheiro, W.B. Kover, V.F. Ferreira, Eur. J. Med. Chem. 4 (2007) 21388.
[17] A.B. Baylis, M.E.D. Hillman, Chem. Abstr. 77 (1972) 34174q.
[18] D. Basavaiah, A.J. Rao, T. Satyanarayana, Chem. Rev. 103 (2003) 811.
[19] V. Singh, S. Batra, Tetrahedron 64 (2008) 4511.
[20] A. Dondoni, A. Massi, Angew. Chim., Int. Ed. 47 (2008) 4638.
[21] S.E. Denmark, G.L. Beutner, Angew. Chem., Int. Ed. 47 (2008) 1560.
[22] D. Basavaiah, A.J. Rao, R. Reddy, J. Chem. Soc. Rev. 36 (2007) 1581.
[23] D. Basavaiah, R.S. Hyma, N. Kumaragurubaran, Tetrahedron 56 (2000) 5905.
[24] F. Coelho, W.P. Almeida, Quim. Nova 23 (2000) 98.
4.1.2.15.
2-[Hydroxy(4-bromophenyl)methyl]propanoate
(15)
[55]. 1H NMR (400 MHz, CDCl3) d = 7.38 (d, J = 8.4 Hz, 2H), 7.16
(d, J = 8.4 Hz, 2H), 6.26 (s, 1H), 5.78 (s, 1H), 5.41 (s, 1H), 3.63 (s,
3H), 3.39 (bs, 1H); 13C NMR (101.0 MHz, CDCl3) d = 166.4 (C),
141.5 (C), 140.3 (C), 131.3 (CH), 128.3 (CH), 126.1 (CH2), 121.6
(C), 72.3 (CH), 51.9 (CH3).
[25] P.T. Kaye, M.A. Musa, Synth. Commun. 33 (2003) 1755.
[26] A. Patra, S. Batra, A.P. Bhaduri, A. Khanna, R. Chander, M. Dikshit, Biosci. Med.
Chem. 11 (2003) 2269.
[27] K. Kundu, S.B. Mukherjee, N. Balu, R. Padmakumar, S.V. Bhat, Synlett (1994)
444.
[28] F. Coelho, W.P. Almeida, D. Veronese, C.R. Mateus, L.E.C. Silva, R.C. Rossi, G.P.
Silveira, C.H. Pavam, Tetrahedron 58 (2002) 7437.
[29] J.S. Hill, N.S. Isaacs, J. Chem. Res. Synop. (1988) 330.
[30] R.O.M.A. De Souza, P.H. Fregadoli, K.M. Gonçalves, L.C. Sequeira, V.L.P. Pereira,
L.C. Filho, P.M. Esteves, M.L.A.A. Vasconcellos, O.A.C. Antunes, Lett. Org. Chem.
3 (2006) 186.
4.1.2.16.
2-[Hydroxy(4-bromophenyl)methyl]acrylonitrile
(16)
[36]. 1H NMR (CDCl3, 200 MHz): d 7.54 (dd, J = 6.0/2.0 Hz, 2H);
7.28 (dd, J = 6.0/1.8 Hz, 2H); 6.11 (d, J = 1.6 Hz, 1H); 6.04 (d,
J = = 1.0 Hz, 1H); 5.27 (s, 1H); 2.71(s, CHOH). 13C NMR (CDCl3,
100 MHz):
d 73.29(1C); 116.66(1C); 122.74(1C); 125.77(1C);
128.10(2C); 130.34(1C); 131.89(2C); 138.12(1C).
4.2. Biology
[31] M.K. Kundu, N. Sundar, S.K. Kumar, S.V. Bhat, S. Biswas, N. Valecha, Bior. Med.
Chem. Lett. 9 (1999) 731.
The promastigotes viability was determined by the ability of liv-
ing cells to reduce the yellow MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide, a tetrazole) to purple formazan
[58] Promastigote forms of L. amazonensis (IFLA/BR/67/PH8) and
L. chagasi (MCAN/BR/99/JP15) in the log phase of growth were
incubated at 25 °C in 96-well cellular culture plates (TPP, Switzer-
[32] P. Narender, U. Srinivas, B. Gangadasu, S. Biswas, R.V. Jayathirtha, Bioor. Med.
Chem. Lett. 15 (2005) 5378.
[33] M.L.A.A. Vasconcellos, T.M.S. Silva, C.A. Camara, R.M. Martins, K.M. Lacerda,
H.M. Lopes, V.L.P. Pereira, R.O.M.A. de Souza, L.T.C. Crespo, Pest. Manag. Sci 62
(2006) 288.
[34] L.K. Kohn, C.H. Pavam, D. Veronense, F. Coelho, J.E. De Carvalho, W.P. Almeida,
Eur. J. Med. Chem. 41 (2006) 738.
[35] R.O.M.A. de Souza, V.L.P. Pereira, M.F. Muzitano, B. Rossi-Bergmann, E.B.A.
Filho, M.L.A.A. Vasconcellos, Eur. J. Med. Chem. 42 (2007) 99.
[36] T.C. Barbosa, C.G. Lima Junior, F.P.L. Silva, H.M. Lopes, L.R.F. Figueiredo, S.C.O.
Souza, G.N. Batista, T.G. Silva, T.M. Silva, M.R. Oliveira, M.L.A.A. Vasconcellos,
Eur. J. Med. Chem. 44 (2009) 1726.
[37] J.M. Sandes, A.R. Borges, C.G.L. Junior, F.P.L. Silva, G.A.U. Carvalho, G.B. Rocha,
M.L.A.A. Vasconcellos, R.C.B.Q. Figueiredo, Bioorg. Chem. 38 (2010) 190.
[38] L.S.M. Miranda, M.L.A.A. Vasconcellos, Synthesis (2004) 1767.
[39] L.S.M. Miranda, B.G. Marinho, S.G. Leitão, E.M. Matheus, P.D. Fernandes,
M.L.A.A. Vasconcellos, Bioorg. Med. Chem. Lett 14 (2004) 1573.
[40] L.S.M. Miranda, B.A. Meireles, J.S. Costa, V.L.P. Pereira, M.L.A.A. Vasconcellos,
Synlett (2005) 869.
land) with 1 Â 105 cells/well in 100
lL Schneider’s Drosophila
medium supplemented with 20% of FBS in the presence or absence
of different concentrations of 1–16 MBHA. The growth of promas-
tigote forms was evaluated simultaneously in the presence of Glu-
cantimeÒ, as reference drug. After a 72 h incubation, 10
l
L of a
5 mg mLÀ1 MTT solution was added to it. After 4 h of incubation
at 25 °C the formed product formazan was dissolved in 50 L of
l
SDS at 10% for 16 h and the absorbance was measured by spectro-
photometry at a 570 nm wavelength. The percentage viability was