www.eurjic.org
FULL PAPER
[
[
2] T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson,
M. Kall, Nature Commun. 2011, 2.
3] M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, J.
Am. Chem. Soc. 2001, 123, 1471.
of size tunability in the formation of AgNP@5 was also
observed in the formation of AgNP@25 and suggests that
the addition of the first-generation triazole ligands on the
distal ends in 5 tends to override the influence of the central [4] C. Dose, D. Ho, H. E. Gaub, P. B. Dervan, C. H. Albrecht,
phloroglucinol core. An extremely long end point of
AgNP@5 formation relative to 2 and 3 was also observed.
This could be a contributing factor to the slightly larger
observed size of AgNP@5 than AgNP@1 and AgNP@25.
Angew. Chem. Int. Ed. 2007, 46, 8384; Angew. Chem. 2007, 119,
536.
5] J. Zheng, P. R. Nicovich, R. M. Dickson, Annual Review of
Physical Chemistry, Annual Reviews, Palo Alto, 2007, vol. 58,
p. 409.
8
[
Taken collectively, compound 5 is a highly versatile ligand [6] S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, N. J.
Halas, Chem. Soc. Rev. 2008, 37, 898.
that can be used to form size-selected, angular and stable
suspensions of AgNPs in high-salt buffers.
[
[
7] C. L. Nehl, J. H. Hafner, J. Mater. Chem. 2008, 18, 2415.
8] A. W. Clark, J. M. Cooper, Angew. Chem. Int. Ed. 2012, 51,
3562; Angew. Chem. 2012, 124, 3622.
[
9] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q.
Zhang, D. Qin, Y. Xia, Chem. Rev. 2011, 111, 3669.
10] L. S. Nair, C. T. Laurencin, J. Biomed. Biotechnol. 2007, 3, 301.
11] K. Belser, T. Vig Slenters, C. Pfumbidzai, G. Upert, L. Mirolo,
K. M. Fromm, H. Wennemers, Angew. Chem. Int. Ed. 2009, 48,
3661; Angew. Chem. 2009, 121, 3715.
Conclusion
[
[
In this study, we have shown for the first time that the
I
structure and the Ag -binding affinity of triazole ligands
[
12] H. Wennemers, J. Pept. Sci. 2012, 18, 437.
[13] G. Upert, F. Bouillere, H. Wennemers, Angew. Chem. Int. Ed.
plays a defining role in controlling the size and shape of
I
AgNPs formed using the Tollens’ reagent as an Ag source.
2012, 51, 4231; Angew. Chem. 2012, 124, 4307.
I
Ligands that display weaker Ag -binding affinity (i.e., 2 and
[
14] M. Hanisch, M. Mackovic, N. Taccardi, E. Spiecker, R. N. K.
3) produced angular AgNPs that were larger in diameter
Taylor, Chem. Commun. 2012, 48, 4287.
than spherical AgNPs prepared by using ligand 1 with high [15] R. S. Patil, M. R. Kokate, C. L. Jambhale, S. M. Pawar, S. H.
I
Han, S. S. Kolekar, Adv. Nat. Sciences Nanosci. Nanotechnol.
Ag -binding affinity. The methodology described herein
2012, 3, 015013.
could therefore facilitate the application of size- and shape-
tunable AgNPs in areas such as drug delivery, imaging,
[
16] Y. D. Yin, Z. Y. Li, Z. Y. Zhong, B. Gates, Y. N. Xia, S. Venka-
teswaran, J. Mater. Chem. 2002, 12, 522.
diagnostics and optoelectronics. Efforts are now underway [17] L. Kvitek, M. Vanickova, A. Panacek, J. Soukupova, M. Dit-
trich, E. Valentova, R. Prucek, M. Bancirova, D. Milde, R.
Zboril, J. Phys. Chem. C 2009, 113, 4296.
18] J. Soukupova, L. Kvitek, A. Panacek, T. j. Nevecna, R. Zboril,
Mater. Chem. Phys. 2008, 111, 77.
to investigate the application of this methodology in these
areas and will be reported in due course.
[
[
19] L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova,
R. Prucek, M. Holecova, R. Zboril, J. Phys. Chem. C 2008,
Experimental Section
112, 5825.
[
20] A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N.
Pizurova, V. K. Sharma, T. j. Nevecna, R. Zboril, J. Phys.
Chem. B 2006, 110, 16248.
For detailed experimental information see the Supporting Infor-
mation.
[
[
[
[
[
21] L. Kvitek, R. Prucek, A. Panacek, R. Novotny, J. Hrbac, R.
Zboril, J. Mater. Chem. 2005, 15, 1099.
Supporting Information (see footnote on the first page of this arti-
cle): Details on the synthesis of triazole ligands, protocols for the
synthesis and characterisation of AgNPs, kinetics studies of AgNP
formation and the calculation of Ag-binding affinities of triazole
ligands.
22] Y. Saito, J. J. Wang, D. N. Batchelder, D. A. Smith, Langmuir
2
003, 19, 6857.
23] R. Dondi, W. Su, G. A. Griffith, G. Clark, G. A. Burley, Small
012, 8, 770.
2
24] W. E. Benet, G. S. Lewis, L. Z. Yang, D. E. P. Hughes, J. Chem.
Res. 2011, 675.
Acknowledgments
25] V. K. Sharma, R. A. Yngard, Y. Lin, Adv. Colloid Interface Sci.
2009, 145, 83.
The Engineering and Physical Sciences Research Council (EPSRC)
is thanked for an Advanced Research Fellowship (to G. A. B., grant
number EP/E055095/1) and for a postgraduate studentship (to
A. J. F.). H. A. K. thanks the University of King Abdulaziz in
Saudi Arabia for a postgraduate studentship. A. W. C. thanks the
Royal Academy of Engineering (grant number 10216/103), the
James Watt Nanofabrication Centre, and the Kelvin Nanocharact-
erisation Centre at the University of Glasgow. A. J. F. also thanks
the University of Leicester for a postgraduate studentship. The au-
thors thank Ishwar Singh for assistance in the analysis of NMR
spectra.
[26] P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel,
B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless, V. V. Fokin,
Angew. Chem. Int. Ed. 2004, 43, 3928; Angew. Chem. 2004, 116,
4018.
[
27] G. A. Burley, J. Gierlich, M. R. Mofid, H. Nir, S. Tal, Y.
Eichen, T. Carell, J. Am. Chem. Soc. 2006, 128, 1398.
28] I. Mallard-Favier, P. Blach, F. Cazier, F. Delattre, Carbohydr.
Res. 2009, 344, 161.
[
[29] P. Li, L. Wang, Y. Zhang, Tetrahedron 2008, 64, 10825.
[30] M. L. Gower, J. D. Crowley, Dalton Trans. 2010, 39, 2371.
[31] J. D. Crowley, P. H. Bandeen, L. R. Hanton, Polyhedron 2010,
2
9, 70.
[
[
32] J. D. Crowley, P. H. Bandeen, Dalton Trans. 2010, 39, 612.
33] M. J. Hynes, J. Chem. Soc., Dalton Trans. 1993, 311.
Received: June 25, 2014
[1] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P.
Van Duyne, Nature Materials 2008, 7, 442.
Published Online: August 15, 2014
Eur. J. Inorg. Chem. 2014, 4886–4895
4895
© 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim