Organic Letters
Letter
(5) The radical difluoromethylation, see: (a) Fujiwara, Y.; Dixon, J. A.;
Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond,
D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494. (b) Fujiwara, Y.;
Dixon, J. A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.;
iodide 3 bearing an electron-withdrawing substituent leads to
oxidative addition of the C−I bond with formation of the
corresponding copper(III) species. A final reductive elimination
in the copper(III) species closes the catalytic cycle to provide the
difluoromethylated arene 4 and to reproduce CuI. In sharp
contrast, the oxidative addition of aryl iodide with an electron-
donating substituent is relatively slow, and consequently, the
decomposition of CuCF2H mainly occurs to produce HF2C−
CF2H and HFCCFH.
́
Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S.
Nature 2012, 492, 95. For Sandmeyer-type difluoromethylation, see:
(c) Matheis, C.; Jouvin, K.; Goossen, L. J. Org. Lett. 2014, 16, 5984. For
the difluoromethylation-containing difluorocarbene pathway, see:
(d) Feng, Z.; Min, Q.-Q.; Zhang, X. Org. Lett. 2016, 18, 44.
(6) For a review, see: Belhomme, M.-C.; Besset, T.; Poisson, T.;
Pannecoucke, X. Chem. - Eur. J. 2015, 21, 12836.
In summary, we have succeeded in the first copper-catalyzed
difluoromethylation of aryl iodides with the organozinc reagent
(DMPU)2Zn(CF2H)2 in DMPU at 60 °C. It was also
demonstrated that transmetalation of the CF2H group from the
zinc reagent to copper catalyst can proceed efficiently even at
room temperature, generating not neutral CuCF2H but cuprate
[Cu(CF2H)2]−. Moreover, aryl iodides bearing electron-with-
drawing substituents underwent the reaction to provide the
difluoromethylated products in moderate to high yields. The
reaction proceeded without use of any ligands for copper catalyst
(e.g., 1,10-phenanthoroline and 2,2′-bipyridine derivatives) and
activators for zinc reagent (e.g., KF, CsF, and NaO-t-Bu).
Development of Pd-catalyzed difluoromethylation of aryl halides
bearing not only electron-withdrawing substituents but also
electron-donating substituents is the topic of our following paper
(7) For selected examples of the direct introduction of functionalized
difluoromethyl (−CF2R) groups to arenes: (a) Fujikawa, K.; Fujioka, Y.;
Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560. (b) Ohtsuka, Y.;
Yamakawa, T. Tetrahedron 2011, 67, 2323. (c) Min, Q.-Q.; Yin, Z.; Feng,
Z.; Guo, W.-H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 1230. (d) Ge, S.;
Chaładaj, W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 4149. (e) Xiao,
Y.-L.; Guo, W.-H.; He, G.-Z.; Pan, Q.; Zhang, X. Angew. Chem., Int. Ed.
2014, 53, 9909. (f) Arlow, S. I.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016,
55, 4567. (g) Xiao, Y.-L.; Min, Q.-Q.; Xu, C.; Wang, R.-W.; Zhang, X.
Angew. Chem., Int. Ed. 2016, 55, 5837.
(8) (a) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 5524. Qing
has succeeded in improving Hartwig’s reaction conditions; see: (b) Jiang,
X.-L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Org. Chem. Front. 2014, 1, 774.
(9) Prakash, G. K. S.; Ganesh, S. K.; Jones, J.-P.; Kulkarni, A.; Masood,
K.; Swabeck, J. K.; Olah, G. A. Angew. Chem., Int. Ed. 2012, 51, 12090.
(10) (a) Gu, Y.; Leng, X.-B.; Shen, Q. Nat. Commun. 2014, 5, 5405.
(b) Chang, D.; Gu, Y.; Shen, Q. Chem. - Eur. J. 2015, 21, 6074.
(11) (a) Mikami, K.; Nakamura, Y.; Aikawa, K. Japanese Patent
Application 2012-113898, May 18, 2012. (b) Mikami, K.; Nakamura, Y.;
Negishi, K.; Aikawa, K. Japanese Patent Application 2013-180007, Aug
30, 2013. (c) Nakamura, Y.; Fujiu, M.; Murase, T.; Itoh, Y.; Serizawa, H.;
Aikawa, K.; Mikami, K. Beilstein J. Org. Chem. 2013, 9, 2404. (d) Aikawa,
K.; Nakamura, Y.; Yokota, Y.; Toya, W.; Mikami, K. Chem. - Eur. J. 2015,
21, 96. (e) Aikawa, K.; Toya, W.; Nakamura, Y.; Mikami, K. Org. Lett.
2015, 17, 4996.
ASSOCIATED CONTENT
* Supporting Information
■
S
TheSupportingInformationisavailablefreeofchargeontheACS
Experimental procedures and compound characterization
(12) (a) Serizawa, H. Doctor Thesis, Tokyo Institute of Technology,
Dec 21, 2015. (b) Mikami, K. Presented at Pacifichem 2015, Honolulu,
HI, Dec 15−20, 2015.
AUTHOR INFORMATION
Corresponding Author
■
(13) Xu, L.; Vicic, D. A. J. Am. Chem. Soc. 2016, 138, 2536.
(14) Recent examples of perfluoroalkylations using (perfluoroalkyl)
zinc reagents: (a) Kaplan, P. T.; Xu, L.; Chen, B.; McGarry, K. R.; Yu, S.;
Wang, H.; Vicic, D. A. Organometallics 2013, 32, 7552. (b) Kaplan, P. T.;
Chen, B.; Vicic, D. A. J. Fluorine Chem. 2014, 168, 158. (c) Kato, H.;
Hirano, K.;Kurauchi, D.;Toriumi, N.;Uchiyama, M. Chem. -Eur. J. 2015,
21, 3895. (d) Wang, X.; Hirano, K.; Kurauchi, D.; Kato, H.; Toriumi, N.;
Takita, R.; Uchiyama, M. Chem. - Eur. J. 2015, 21, 10993.
(15) Previous reports on the stable solid reagent mono(trifluor-
omethyl)zinc prepared from CF3Br and zinc dust: (a) Naumann, D.;
Tyrra, W.; Kock, B.; Rudolph, W.; Wilkes, B. J. Fluorine Chem. 1994, 67,
91. (b) Tyrra, W.; Naumann, D.; Pasenok, S. V.; Yagupolskii, Y. L. J.
Fluorine Chem. 1995, 70, 181. (c) Kremlev, M. M.; Tyrra, W.; Mushta, A.
I.; Naumann, D.; Yagupolskii, Y. L. J. Fluorine Chem. 2010, 131, 212.
(16) Previous reports on bis(trifluoromethyl)zinc and bis(perfuor-
oalkyl)zinc prepared from RFI and dialkylzinc: (a) Lange, H.; Naumann,
D. J. FluorineChem. 1984, 26, 435.(b)Schorn, C.;Naumann, D.;Scherer,
H.; Hahn, J. J. Fluorine Chem. 2001, 107, 159.
(17) The preparation of (difluromethyl)zinc has been reported by
Burton, viathereaction ofzincdustwithbromodifluoromethaneinDMF
to afford Zn(CF2H)Br and Zn(CF2H)2 in an 88:12 ratio in 73−85%
yield: Burton, D. J.; Hartgraves, G. A. J. Fluorine Chem. 2007, 128, 1198.
(19) By treatment of HCF2I and diethylzinc in a 1:1 ratio, the formation
of both Zn(CF2H)Et and Zn(CF2H)2 was confirmed by Charette:
Beaulieu, L.-P. B.; Schneider, J. K.; Charette, A. B. J. Am. Chem. Soc. 2013,
135, 7819.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Thisresearchwassupported byJST(ACT-C:AdvancedCatalytic
Transformation program for Carbon utilization) and JSPS
KAKENHI Grant No. 26620078.
REFERENCES
■
(1) (a) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.;
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev.
2014, 114, 2432. (b) O’Hagan, D.; Deng, H. Chem. Rev. 2015, 115, 634.
(c) Tirotta, I.; Dichiarante, V.; Pigliacelli, C.; Cavallo, G.; Terraneo, G.;
Bombelli, F. B.; Metrangolo, P.; Resnati, G. Chem. Rev. 2015, 115, 1106.
(2) For selected reviews, see: (a) Tomashenko, O. A.; Grushin, V. V.
Chem. Rev. 2011, 111, 4475. (b) Liang, T.; Neumann, C. N.; Ritter, T.
Angew. Chem., Int. Ed. 2013, 52, 8214. (c) Sugiishi, T.; Amii, H.; Aikawa,
K.; Mikami, K. Beilstein J. Org. Chem. 2015, 11, 2661. (d) Zeng, Y.; Ni, C.;
Hu, J. Chem. - Eur. J. 2016, 22, 3210.
(3)Forselectedreviews, see:(a)Hu, J.;Wang, F. Chem. Commun. 2009,
7465. (b) Hu, J. J. Fluorine Chem. 2009, 130, 1130. (c) Ni, C.; Hu, J.
Synthesis 2014, 46, 842. (d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115,
765.
(4) (a) Umemoto, T.; Singh, R. P.; Xu, Y.; Saito, N. J. Am. Chem. Soc.
2010, 132, 18199. (b) Fujimoto, T.; Becker, F.; Ritter, T. Org. Process Res.
Dev. 2014, 18, 1041.
(20) Eujen, R.; Hoge, B.; Brauer, D. J. J. Organomet. Chem. 1996, 519, 7.
D
Org. Lett. XXXX, XXX, XXX−XXX