1
48 Bugar cˇ i c´ and Mojsilovi c´
of the cyclic ether products in the presence of cat-
alytic amount of ZnCl and FeCl are even better than
those obtained with pyridine and Ag O. Even though
PhSeCl in combination with equimolar amount of
ZnCl is known as a strong chlorophenylselenylating
[3] Wesley, J. W. Polyether Antibiotics Naturally Occur-
ring Acid Ionophores; Marcel Dekker: New York,
2
3
1
982; Vols. I and II.
4] Painter, G. R.; Presman, B. C. Top Curr Chem 1982,
01, 83.
2
[
1
2
[5] Still, W. C.; Hauck, P.; Kempf, D. Tetrahedron Lett
1987, 28, 2817.
agent for olefins [43], in phenylselenocyclization re-
action of our alkenols presence of equimolar amount
[
6] Smith, P. W.; Still, W. C. J Am Chem Soc 1988, 110,
917.
7
of ZnCl
9%).
We also evaluated the effect of AgOAc on the cy-
2
and FeCl influenced moderate yields (41–
3
[7] Shimizu, Y. Marine Natural Products; Academic
Press: New York, 1978; Vol. I, p. 1.
9
[8] Ellis, S. Toxicon 1985, 23, 469.
clization process. The results obtained indicate that
in the presence of AgOAc (in catalytic and equimolar
amount) the cyclization process is slower and yields
of the phenylseleno ethers are lower (27–86% in cat-
alytic amount and 42–89% in equimolar amount).
These results are clear evidence that the presence
[9] Sakemi, S.; Higa, T.; Jefford, C. W.; Bernardinelli, G.
Tetrahedron Lett 1986, 27, 4287.
10] Suzuki, T.; Suzuki, A.; Furusaki, T.; Matsumoto, A.;
[
Kato, A.; Imanaka, Y.; Kurosawa, E. Tetrahedron Lett
1
985, 26, 1329.
[11] Corley, D. G.; Herb, R.; Moore, E.; Scheuer, P. J.; Paul,
V. J. J Org Chem 1988, 53, 3644.
[
12] Cohran, V. M. Physiology of Fungi; Wiley: New York,
958.
of pyridine, Ag
2
O, ZnCl
2
, and FeCl increase the yield
3
1
of the cyclic ether products.
[
13] Schreiber, S. L.; Kelly, S. E.; Porco, J. A.; Sanmakia,
T.; Suh, E. M. J Am Chem Soc 1988, 110, 6210.
[14] Gonz a´ lez, A. G.; Martin, J. D.; Martin, V. S.; Norte,
M.; P e´ rez, R.; Ruano, J. Z.; Drexler, S. A.; Clardy, J.
Tetrahedron 1982, 38, 1009.
[15] Ravelo, J. L.; Regueiro, A.; Martin, J. D. Tetrahedron
Lett 1992, 33, 3389.
16] Hoffmann, R. W.; M u¨ nster, I. Tetrahedron Lett 1995,
A speculative rationale explaining the increased
yields of cyclic ether products in the additive-
catalyzed process performed under our conditions
could be the following. All used additives can bound
−
counter ion from reagent (X from PhSeX), increase
−
electrophilicity of PhSe group, and eliminate X as
[
a concurrent of hydroxyl group in cyclization step.
All additives could enhance the nucleophilicity of the
hydroxyl group of the alkenol and also mediate the
stabilization of the oxonium ion intermediates.
In conclusion, it appears that the above de-
36, 1431.
[17] Alvarez, E.; Diaz, M. T.; Hanxing, L.; Martin, J. D. J
Am Chem Soc 1995, 117, 1437.
[
18] Clark, J. S.; Kettle, J. G. Tetrahedron Lett 1997, 38,
27.
1
[
19] Inoue, M.; Sasaki, M.; Tachibana, K. Tetrahedron Lett
5
scribed conditions for cyclization of ꢀ -alkenols to
1997, 38, 1611.
THP-ethers are more advantageous in terms of time
and yield than those previously reported for the same
reagents [44]. In addition, other conditions will be
tested to increase the yields for the less effective
alkenols.
This improved procedure for phenyselenoether-
ification should often prove the simplest and supe-
rior to those currently available. As for the yields
of cyclic ethers, the procedure described in this ar-
ticle gave better results than reported procedures.
Accompanied by other merits, such as the mildness
of the reaction conditions and the simplicity of the
experimental procedure, our procedure is the most
attractive one for the conversion of alkenols into ox-
acyclic compounds. Moreover, we are confident that
this procedure will be of general use for a facile syn-
thesis of various heterocycles.
[20] Berger, D.; Overman, L. E.; Renhowe, P. A. J Am Chem
Soc 1997, 119, 2446.
[
21] Crimmins, M. T.; Choy, A. L. J Org Chem 1997, 62,
548.
7
[
22] Nicolaou, K. C.; Prasad, C. V. C.; Hwang, C. K.;
Duggan, M. E.; Veale, C. A. J Am Chem Soc 1989,
111, 5321.
[
[
23] Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.;
Hwang, C. K. J Am Chem Soc 1989, 111, 5330.
24] Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.;
Hwang, C. K. J Am Chem Soc 1989, 111, 5335.
[25] Cooper, A. J.; Salomon, R. G. Tetrahedron Lett 1990,
31, 3813.
[
26] Suzuki, T.; Sato, O.; Hirama, M. Tetrahedron Lett
990, 31, 4747.
1
[
27] Aicher, T. D.; Buszek, K. R.; Fang, F. K.; Forsyth, C.
J.; Jung, S. H.; Kishi, Y.; Scola, P. M. Tetrahedron Lett
1992, 33, 1549.
[28] Martin, V. S.; Polaz o´ n, J. M. Tetrahedron Lett 1992,
3, 2399.
3
[
29] Konstantinovic, S.; Bugarcic, Z.; Milosavljevic, S.;
We believe that this point and the possible mech-
anistic implications are worthy of further studies.
Schroth, G.; Mihailovic, M. Lj. Liebigs Ann Chem
1
992, 261.
30] Gung, B. W.; Francis, M. B. J Org Chem 1993, 58,
177.
[
[
6
REFERENCES
31] Mukai, C.; Ikeda, Y.; Sugimoto, Y.; Hanaoka, M.
Tetrahedron Lett 1994, 35, 2179.
[
[
1] Yasumoto, T.; Murata, M. Chem Rev 1993, 93,
897.
2] Faulkner, D. J Nat Prod Rep 1997, 14, 259.
1
[32] Mukai, C.; Sugimoto, Y.; Ikeda, Y.; Hanaoka, M.
Tetrahedron Lett 1994, 35, 2183.