B. Holzberger et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3136–3139
3139
3. (a) Krueger, A. T.; Kool, E. T. J. Am. Chem. Soc. 2008, 130, 3989; (b) Godde, F.;
Toulmé, J.-J.; Moreau, S. Biochemistry 1998, 37, 13765; (c) Michel, J.; Toulmé, J.-
J.; Vercauteren, J.; Moreau, S. Nucleic Acids Res. 1996, 24, 1127.
two and five nucleotides are introduced, respectively, Therminator
DNA polymerase is capable of incorporating even more than 10
VdG units in a row (Fig. 3; right panel). Spiking the reaction mix-
tures with natural dGTP aside from VdGTP would probably allow
the formation of full-length products. Interestingly, also in case
of the sterical challenging SdGTP we observed the incorporation
of one or two SdGMPs by KOD and Therminator DNA polymerase,
respectively (Fig. 3c; SdGTP). In contrast, reactions catalyzed by
KlenTaq DNA polymerase did not show any detectable primer
elongation in presence of SdGTP (Fig. 3c; left panel). To further
investigate the acceptance of SdGTP in primer extension experi-
ments we used the single mutant L408Q of Therminator DNA poly-
merase (Fig. 3c; right panel). This enzyme has been developed by
directed evolution by Staiger and Marx and displays an enhanced
substrate spectra accepting ribonucleotides and nucleobase-
modified dNTPs.10b Here, the L408Q mutation apparently enables
Therminator DNA polymerase to incorporate up to three adjacent
SdG units in a row resulting in an almost quantitative primer con-
version yielding primer products labelled by at least two SdG
moieties.
4. (a) Hainke, S.; Seitz, O. Angew. Chem. 2009, 121, 8399. Angew. Chem., Int. Ed.
2009, 48, 8250; (b) Grigorenko, N. A.; Leumann, C. J. Chem. Eur. J. 2009, 15, 639;
(c) Gao, J.; Watanabe, S.; Kool, E. T. J. Am. Chem. Soc. 2004, 126, 12748; (d)
Wilson, J. N.; Teo, Y. N.; Kool, E. T. J. Am. Chem. Soc. 2007, 129, 15426; (e)
Somoza, M. M.; Andreatta, D.; Murphy, C. J.; Coleman, R. S.; Berg, M. A. Nucleic
Acids Res. 2004, 32, 2494; (f) Jiang, Y. L.; Song, F. J.; Stivers, T. Biochemistry 2002,
41, 11248; (g) Rao, P.; Benner, S. A. J. Org. Chem. 2001, 66, 5012; (h) Lehbauer, J.;
Pfleiderer, W. Helv. Chim. Acta 2001, 84, 2330; (i) Coleman, R. S.; Madaras, M. L.
J. Org. Chem. 1998, 63, 5700; (j) Ren, R. X.-F.; Chaudhuri, N. C.; Paris, P. L.;
Rumney, S., IV; Kool, E. T. J. Am. Chem. Soc. 1996, 118, 7671.
5. Greco, N. J.; Tor, Y. J. Am. Chem. Soc. 2005, 127, 10784.
6. Ward, D. C.; Reich, E.; Stryer, L. J. Biol. Chem. 1969, 244, 1228.
7. (a) Charubala, R.; Maurinsh, J.; Rösler, A.; Melguizo, M.; Jungmann, O.; Gottlieb,
M.; Lehbauer, J.; Hawkins, M.; Pfleiderer, W. Nucleosides Nucleotides 1997, 16,
1369; (b) Seela, F.; Jiang, D.; Xu, K. Org. Biomol. Chem. 2009, 7, 3463; (c) Greco,
N. J.; Tor, Y. Tetrahedron 2007, 63, 3515; (d) Dumas, A.; Luedtke, N. W. J. Am.
Chem. Soc. 2010, 132, 18004.
8. (a) Nadler, A.; Strohmeier, J.; Diederichsen, U. Angew. Chem. 2011, 123, 5504.
Angew. Chem., Int. Ed. 2011, 50, 5392; (b) Müllar, S.; Strohmeier, J.;
Diederichsen, U. Org. Lett. 2012, 14, 1382.
9. (a) Weisbrod, S. H.; Marx, A. Chem. Commun. 2008, 5675; (b) Hocek, M.; Fojta,
M. Org. Biomol. Chem. 2008, 6, 2233; (c) Sakthivel, K.; Barbas, C. F., III Angew.
Chem. 1998, 110, 3957. Angew. Chem., Int. Ed. 1998, 37, 2872; (d) Cahová, H.;
ˇ
Havran, L.; Brázdilová, P.; Pivonková, H.; Pohl, R.; Fojta, M.; Hocek, M. Angew.
In summary, we report the synthesis of 8-vinyl- and 8-styryl-20-
deoxyguanosine-50-triphosphates and attempts to enzymatically
introduce the fluorescent nucleotides into DNA by various DNA
polymerases. It clearly turned out that the vinyl-modified nucleo-
tide VdGTP is suitable for the enzymatic synthesis of fluorescent
DNA. It can be easily and specifically incorporated within a grow-
ing primer strand at single and even at multiple adjacent positions.
In contrast, we observed that the enzymatic conversion of the sty-
ryl-modified nucleotide SdGTP is markedly inhibited. This is
caused by the rather large modification at position C8 of the guan-
ine nucleobase. Nevertheless, we have shown that up to three
8-styryl guanosines can be successfully attached to the 30-end of
a DNA primer strand. Interestingly, DNA polymerases behave dif-
ferently by processing the fluorescent dGTPs showing less accep-
tance in case of KlenTaq DNA polymerase (A-family) but efficient
catalysis if B-family DNA polymerases are used. Taken together,
at least the fluorescent analog VdGTP is suitable for the enzymatic
introduction into DNA emphasizing the broad applicability and po-
tential of 8-vinyl-guanosine.
Chem. 2008, 120, 2089. Angew. Chem., Int. Ed. 2008, 47, 2059; (e) Jäger, S.;
Famulok, M. Angew. Chem. 2004, 116, 3399. Angew. Chem., Int. Ed. 2004, 43,
ˇ
ˇ
3337; (f) Vrábel, M.; Horáková, P.; Pivonková, H.; Kalachova, L.; Cernocká, H.;
Cahová, H.; Pohl, R.; Šebest, P.; Havran, L.; Hocek, M.; Fojta, M. Chem. Eur. J.
2009, 15, 1144; (g) Thum, O.; Jäger, S.; Famulok, M. Angew. Chem. 2001, 113,
4112. Angew. Chem., Int. Ed. 2001, 40, 3990; (h) Weizman, H.; Tor, Y. J. Am.
Chem. Soc. 2002, 124, 1568; (i) Gramlich, P. M. E.; Wirges, C. T.; Gierlich, J.;
Carell, T. Org. Lett. 2008, 10, 249; (j) Obeid, S.; Yulikov, M.; Jeschke, G.; Marx, A.
Angew. Chem. 2008, 120, 6886. Angew. Chem., Int. Ed. 2008, 47, 6782; (k) Seo, T.
S.; Bai, X.; Kim, D. H.; Meng, Q.; Shi, S.; Ruparel, H.; Li, Z.; Turro, N. J.; Ju, J. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 5926; (l) Giller, G.; Tasara, T.; Angerer, B.;
Mühlegger, K.; Amacker, M.; Winter, H. Nucleic Acids Res. 2003, 31, 2630; (m)
Ohbayashi, T.; Kuwahara, M.; Hasegawa, M.; Kasamatsu, T.; Tamura, T.; Sawai,
H. Org. Biomol. Chem. 2005, 3, 2463; (n) Baccaro, A.; Marx, A. Chem. Eur. J. 2010,
16, 218; (o) Wang, Y.; Tkachenko, B. A.; Schreiner, P. R.; Marx, A. Org. Biomol.
Chem. 2011, 9, 7482; (p) Holzberger, B.; Marx, A. Bioorg. Med. Chem. 2009, 17,
3653; (q) Gramlich, P. M. E.; Wirges, C. T.; Manetto, A.; Carell, T. Angew. Chem.,
Int. Ed. 2008, 47, 8350; (r) Gutsmiedl, K.; Fazio, D.; Carell, T. Chem. Eur. J. 2010,
16, 6877; (s) Obeid, S.; Baccaro, A.; Welte, W.; Diederichs, K.; Marx, A. Proc. Natl.
Acad. Sci. U.S.A. 2010, 107, 21327; (t) Baccaro, A.; Steck, A.-L.; Marx, A. Angew.
Chem. 2012, 124, 260. Angew. Chem., Int. Ed. 2012, 51, 254.
10. For example see: (a) Ramsay, N.; Jemth, A.-S.; Brown, A.; Crampton, N.; Dear,
P.; Holliger, P. J. Am. Chem. Soc. 2010, 132, 5096; (b) Staiger, N.; Marx, A.
ChemBioChem 1963, 2010, 11; (c) Kranaster, R.; Marx, A. ChemBioChem 2010,
11, 2077; (d) Loakes, D.; Gallego, J.; Pinheiro, V. B.; Kool, E. T.; Holliger, P. J. Am.
Chem. Soc. 2009, 131, 14827.
Acknowledgments
ˇ
11. (a) Capek, P.; Cahová, H.; Pohl, R.; Hocek, M.; Gloeckner, C.; Marx, A. Chem. Eur.
J. 2007, 13, 6196; (b) Jäger, S.; Rasched, G.; Kornreich-Leshem, H.; Engeser, M.;
Thum, O.; Famulok, M. J. Am. Chem. Soc. 2005, 127, 15071; (c) Anderson, J. P.;
Angerer, B.; Loeb, L. A. Biotechniques 2005, 38, 257; (d) Cahová, H.; Pohl, R.;
Financial Support through the Konstanz Research School Chem-
ical Biology and the DFG is gratefully acknowledged. B.H. thanks
the Carl-Zeiss-Foundation for a Ph.D. scholarship. We also thank
Nadine Staiger for the expression and purification of Therminator
DNA polymerases.
ˇ
Bednárová, L.; Nováková, K.; Cvacka, J.; Hocek, M. Org. Biomol. Chem. 2008, 6,
3657; (e) Hollenstein, M.; Hipolito, C.; Lam, C.; Dietrich, D.; Perrin, D. M. Angew.
Chem. 2008, 120, 4418. Angew. Chem., Int. Ed. 2008, 47, 4346; (f) Lam, C.;
Hipolito, C.; Perrin, D. M. Eur. J. Org. Chem. 2008, 4915.
12. Ogasawara, S.; Maeda, M. Angew. Chem. 2008, 120, 8971. Angew. Chem., Int. Ed.
2008, 47, 8839.
13. Ogasawara, S.; Saito, I.; Maeda, M. Tetrahedron Lett. 2008, 49, 2479.
14. Lena, S.; Neviani, P.; Masiero, S.; Pieraccini, S.; Spada, G. P. Angew. Chem., Int. Ed.
2010, 49, 3657.
Supplementary data
Supplementary data associated with this article can be found, in
15. Gannett, P. M.; Sura, T. P. Synth. Commun. 1993, 23, 1611.
16. (a) Stille, J. K. Angew. Chem. 1986, 98, 504; (b) Stille, J. K. Angew. Chem., Int. Ed.
1986, 25, 508.
17. Ludwig, J. Acta Biochim. Biophys. Acad. Sci. Hung. 1981, 16, 131.
18. Western, E. C.; Daft, J. R.; Johnson, E. M.; Gannett, P. M.; Shaughnessy, K. H. J.
Org. Chem. 2003, 68, 6767.
References and notes
19. Caton-Williams, J.; Smith, M.; Carrasco, N.; Huang, Z. Org. Lett. 2011, 13, 4156.
20. (a) Clark, J. M. Nucleic Acids Res. 1988, 16, 9677; (b) Obeid, S.; Blatter, N.;
Kranaster, R.; Schnur, A.; Welte, W.; Diederichs, K.; Marx, A. EMBO J. 2010, 29,
1738.
1. (a) Wilson, J. N.; Kool, E. T. Org. Biomol. Chem. 2006, 4, 4265; (b) Kool, E. T. Acc.
Chem. Res. 2002, 35, 936.
2. (a) Förster, U.; Gildenhoff, N.; Grünewald, C.; Engels, J. W.; Wachtveitl, J. J.
Lumin. 2009, 129, 1454; (b) Meyer-Enthart, E.; Wagenknecht, H.-A. Angew.
Chem. 2006, 118, 3451. Angew. Chem., Int. Ed. 2006, 45, 3372; (c) Hurley, D. J.;
Seaman, S. E.; Mazura, J. C.; Tor, Y. Org. Lett. 2002, 4, 2305.
21. Choi, J.; Majima, T. Chem. Soc. Rev. 2011, 40, 5893.