J . Org. Chem. 2001, 66, 3229-3231
3229
bene, which undergoes further ring ortho-lithiation6 if
the reaction is carried out in hexane in the presence of
TMEDA. An elegant reinvestigation by Schleyer et al.7
provided the spectroscopic and crystallographic proof of
structure. In contrast to n-butyllithium, the LICKOR
Dip h en yla cetylen e a n d th e LICKOR
Su p er ba se: o,o′-Dim eta la tion a n d Rea ction
w ith Electr op h iles. A Con ven ien t Syn th esis
of o,o′-Disu bstitu ted Dip h en yla cetylen es†
(Lochmann-Schlosser) superbase
(n-butyllithium/
J anusz Kowalik* and Laren M. Tolbert
t-BuOK)8 does not affect the triple bond in lithium
phenylacetylide, producing ortho-metalated material in
high yields and regioselectivity.9 It has been shown that
the ortho-directing and activating effects of the lithium
acetylide group are analogous although somewhat weaker
in strength to those of OCH3, CH2NMe2, SLi, sulfonyl,
and silyl or amido groups.9c,10 The nature of the resulting
dianion is not known but is assumed to involve coordina-
tion of the potassium with the aromatic ring. The
structure of that species might be as complex as that of
the LICKOR superbase itself.11
School of Chemistry and Biochemistry, Georgia Institute of
Technology, Atlanta, Georgia 30332-0400, U.S.A.
janusz.kowalik@chemistry.gatech.edu
Received October 30, 2000
The renaissance of acetylene chemistry in recent years
can be attributed in great part to research in the area of
materials chemistry.1,2 Breakthroughs in palladium-
catalyzed cross-coupling reactions involving acetylenes
opened the doors to a plethora of exotic structures,
interesting for their theoretical ramifications on, for
example, the limits to aromaticity 3 and for their practical
synthetic utility as well. In this context, the chemistry
of diphenylacetylene and its derivatives continues to
attract significant interest, as they constitute intermedi-
ate or final components of many of the technologically
important structures. Nevertheless, only a handful of
convenient synthetic methods are available for the
preparation of substituted derivatives of diphenylacety-
lene. For example, one of the most versatile derivatives
of diphenylacetylene, o,o′-diiododiphenylacetylene (2b),
is produced by halogen exchange of o,o′-dibromodiphe-
nylacetylene,4 which is itself obtained through a tedious
multistep process.5 Our direct approach is to employ the
easily available diphenylacetylene, which upon double
ortho-metalation, followed by reaction with electrophilic
agents, should result in a symmetrical double substitu-
tion. To our knowledge, there is no report in the literature
about such a direct ortho-functionalization of dipheny-
lacetylene without affecting the acetylene unit. It is
known that diphenylacetylene reacts with n-butyllithium
in THF to form an addition product, 1-lithio-2-butylstil-
Addition of diphenylacetylene to
a
preformed12
LICKOR superbase (made of equimolar amounts of
potassium tert-butoxide and n-butyllithium) in THF/
hexane at -78 °C produces o,o′-dimetallodiphenyl-
acetylene 1, which reacts smoothly with various elec-
trophiles including methyl iodide, chlorotrimethyl-
silane, chlorodiphenylphosphine, methyl disulfide, and
chlorotri-n-butyltin, providing corresponding o,o′-di-
substituted derivatives 2 in reasonable isolated yields
(47-86%) (Scheme 1) (Table 1).
In the case of iodine as an electrophile it is found
that much better results can be obtained when the
original o,o′-dipotassiodiphenylacetylene (1) is converted
(6) (a) Mulvaney, J . E.; Garlund, Z. G.; Garlund, S. L. J . Am. Chem.
Soc. 1963, 85, 3897. (b) Mulvaney, J . E.; Garlund, Z. G.; Garlund, S.
L.; Newton, D. J . J . Am. Chem. Soc. 1966, 88, 476. (c) Mulvaney, J .
E.; Carr, L. J . J . Org. Chem. 1968, 33, 3286. (d) Mulvaney, J . E.;
Newton, D. J . J . Org. Chem. 1969, 34, 1936.
(7) Bauer, W.; Feigel, M.; Mu¨ller, G.; Schleyer, P. v. R. J . Am. Chem.
Soc. 1988, 110, 6033.
(8) (a) Lochmann, L.; Posp´ısˇil, J .; L´ım, D. Tetrahedron Lett. 1966,
257. (b) Schlosser, M. J . Organomet. Chem. 1967, 8, 9.
(9) (a) Hommes, H.; Verkruijsse, H. D.; Brandsma, L. J . Chem. Soc.,
Chem. Commun. 1981, 366. (b) Hommes, H.; Verkruijsse, H. D.;
Brandsma, L. Tetrahedron Lett. 1981, 2495. (c) Brandsma, L.; Hommes,
H.; Verkruijsse, H. D.; deJ ong, R. L. P. Recl. Trav. Chim. Pays-Bas
1985, 104, 226.
* Fax: (404) 894-7452.
(10) For a review, see: (a) Schlosser, M.; Faigl, F.; Franzini, L.;
Geneste, H.; Katsoulos, G.; Zhong, G. Pure Appl. Chem. 1994, 66, 1439.
(b) Chadwick, S. T.; Rennels, R. A.; Rutheford, J . L.; Collum, D. B. J .
Am. Chem. Soc. 2000, 122, 8640 and references therein. (c) For a review
on CIPE effects, see: Beak, P.; Meyers, A. I. Acc. Chem. Res. 1986,
19, 356. (d) Snieckus, V. Bull. Chem. Soc. Fr. 1988, 1, 67. (e) Block,
E.; Eswarakrishnan, V.; Gernon, M.; Ofori-Okai, G.; Saha, C.; Tang,
K.; Zubieta, J . J . Am. Chem. Soc. 1989, 111, 658. (f) Figuly, G. D.;
Loop, C. K.; Martin, J . C. J . Am. Chem. Soc. 1989, 111, 654. (g) Gais,
H.-J .; Vollhardt, J . Tetrahedron Lett. 1988, 1529. (h) Tamao, K.; Yao,
H.; Tsutsumi, Y.; Abe, H.; Hayashi, T.; Ito, Y. Tetrahedron Lett. 1990,
2925. (i) J ayasuriya, K.; Iyer, S. Int. J . Quantum Chem. 1988, 34, 199.
(11) For a recent review on reaction of organolithium compounds
with alkali metal alkoxides and reactions of “superbases”, see: (a)
Lochmann, L. Eur. J . Inorg. Chem. 2000, 1115. Schlosser, M. Pure
Appl. Chem. 1988, 60, 1627. (b) Kremer, T.; Harder, S.; J unge, M.;
Schleyer, P. v. R. Organometallics 1996, 15, 585. (c) den Besten, R.;
Lakin, M. T.; Veldman, N.; Spek, A. L.; Brandsma, L. J . Organomet.
Chem. 1996, 514, 191. (d) Harder, S.; Streitwieser, A. Angew. Chem.,
Int. Ed. Engl. 1993, 32, 1066. (e) Lochmann, L.; J akubov, A.;
Brandsma, L. Collect. Czech. Chem. Commun. 1993, 58, 1445. (f) Bauer,
W.; Lochmann, L. J . Am. Chem. Soc. 1992, 114, 7482.
† Dedicated to Professor Paul von Rague´ Schleyer on the occasion
of his 70th birthday.
(1) Modern Acetylene Chemistry; Stang, P. J ., Diederich, F., Eds.;
VCH Publishers: New York, 1995.
(2) For an excellent review, see: (a) Haley, M. M. Synlett 1998, 7,
557. (b) Seminario, J . M.; Zacarias, A. G.; Tour, J . M. J . Am. Chem.
Soc. 2000, 122, 3015. Diederich, F.; Rubin, Y. Angew. Chem., Int. Ed.
Engl. 1992, 31, 1101. (c) Katayama, N.; Czarnecki, M. A.; Satoh, M.;
Watanabe, T.; Ozaki, Y. Appl. Spectrosc. 1997, 51, 487. (d) Taniike,
K.; Katayama, N.; Sato, T.; Ozaki, Y.; Czarnecki, M. A.; Satoh, M.;
Watanabe, T.; Yasuda, A. Mikrochim. Acta 1997, 14, 581. (e) Sarala,
S.; Roy, A.; Madhusudana, N. V.; Nguyen, H. T.; Destrade, C.; Cluzeau,
P. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1995, 261, 1. (f) Cluzeau,
P.; Nguyen, H. T.; Destrade, C.; Isaert, N.; Barois, P.; Babeau, A. Mol.
Cryst. Liq. Cryst. Sci. Technol., Sect. A 1995, 260, 69. (g) Godt, A.;
Fre´chet, J . M.; Beecher, J . E.; Willand, C. Macromol. Chem. Phys. 1995,
196, 133. (h) J uang, T. M.; Chen, Y. N.; Lung, S. H.; Lu, Y. H.; Hsu, C.
S. Liq. Cryst. 1993, 15, 529. (i) Morichere, D.; Chollet, P. A.; Fleming,
W.; (j) J urich, M.; Smith, B. A.; Swalen, J . D. J . Opt. Soc. Am. B 1993,
10, 1894. (k) Wu, S. T.; Hsu, C. S.; Chen, Y. N.; Wang, S. R.; Lung, S.
H. Opt. Eng. 1993, 32, 1792.
(3) Wan, W. B.; Kimball, D. B.; Haley, M. M. Tetrahedron Lett. 1998,
6795.
(4) (a) Dierks, R.; Vollhardt, K. P. C. J . Am. Chem. Soc. 1986, 108,
3150. (b) Whitlock, B. J .; Whitlock, H. W. J . Org. Chem. 1972, 37, 3559.
(5) (a) Letzinger, R. L.; Nazy, J . R.; J . Am. Chem. Soc. 1959, 81,
3013. (b) Diercks, R.; Vollhardt, K. P. C. Angew. Chem. 1986, 98, 268.
(12) It was found that changing the procedure to a potentially more
convenient one, in situ formation of the LICKOR superbase with
diphenylacetylene present in the reaction mixture followed by quench-
ing with chlorotrimethylsilane, produced a complex mixture of at least
nine compounds with the yield of the desired o,o′-disubstitution not
exceeding 30% (by gas chromatography, uncorrected).
10.1021/jo001533t CCC: $20.00 © 2001 American Chemical Society
Published on Web 04/12/2001