I. L. Fedushkin et al.
FULL PAPER
van Asselt, K. Vrieze, C. J. Elsevier, J. Organomet. Chem. 1994,
480, 27.
[2] J. M. Rose, A. E. Cherian, G. W. Coates, J. Am. Chem. Soc.
2006, 128, 4186.
[3] I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, G. K. Fu-
kin, Angew. Chem. Int. Ed. 2003, 42, 3294; Angew. Chem. 2003,
115, 3416.
[4] a) I. L. Fedushkin, A. A. Skatova, V. K. Cherkasov, V. A. Chu-
dakova, S. Dechert, M. Hummert, H. Schumann, Chem. Eur.
J. 2003, 9, 5778; b) I. Fedushkin, A. Skatova, A. Lukoyanov,
V. Chudakova, S. Dechert, M. Hummert, H. Schumann, Russ.
Chem. Bull. 2004, 53, 2751; c) I. L. Fedushkin, A. A. Skatova,
M. Hummert, H. Schumann, Eur. J. Inorg. Chem. 2005, 1601;
d) I. L. Fedushkin, V. M. Makarov, E. C. Rosenthal, G. K. Fu-
kin, Eur. J. Inorg. Chem. 2006, 827; e) I. L. Fedushkin, V. A.
Chudakova, M. Hummert, H. Schumann, Z. Naturforsch. B
2008, 63, 161; f) I. L. Fedushkin, A. S. Nikipelov, A. A. Ska-
tova, O. V. Maslova, A. N. Lukoyanov, G. K. Fukin, A. V.
Cherkasov, Eur. J. Inorg. Chem. 2009, 3742; g) I. L. Fedushkin,
A. N. Lukoyanov, G. K. Fukin, M. Hummert, H. Schumann,
Russ. Chem. Bull. 2006, 55, 1177.
2-(1-Phenylvinyl)naphthalen-1-ol (6): Under air, naphthalen-2-ol
(0.14 g, 1.0 mmol) was placed in an NMR tube. Then, under vac-
uum, compound 2 (15 mg, 0.01 mmol), phenylacetylene (0.1 g,
1.0 mmol), and [D6]benzene (0.5 mL) were added to this tube. The
tube was sealed, and the mixture was heated at 90 °C. The forma-
tion of compound 6 was monitored by NMR spectroscopy. 1H
NMR (200 MHz, CDCl3, 25 °C): δ = 7.84–7.81 (m, 1 H, CH arom),
7.79–7.76 (m, 1 H, CH arom), 7.57–7.49 (m, 1 H, CH arom), 7.41–
7.26 (m, 8 H, CH arom), 6.34 [d, J = 1.1 Hz, 1 H, HC=C(Ph)],
5.62 (s, 1 H, OH), 5.53 [d, J = 1.1 Hz, 1 H, HC=C(Ph)] ppm. The
NMR spectrum listed above is identical with that reported in the
literature.[9] After 20 h at 90 °C, the conversion of the reagents
reached 99%.
5,7-(Di-tert-butyl)-4-methyl-2,4-diphenyl-4H-chromene (7): Under
air, 3,5-di-tert-butylphenol (0.21 g, 1.0 mmol) was placed in an
NMR tube. Then, under vacuum, compound 2 (15 mg, 0.01 mmol),
phenylacetylene (0.1 g, 1.0 mmol) and [D6]benzene (0.5 mL) were
added to this tube. The tube was sealed, and the mixture was heated
at 90 °C. The formation of compound 7 was monitored by NMR
spectroscopy. According to the NMR spectroscopic data, the yield
of compound 7 reached 95% after 46 h. Compound 7 (0.17 g, 80%)
was isolated by column chromatography using light petroleum/
[5] I. L. Fedushkin, M. Hummert, H. Schumann, Eur. J. Inorg.
Chem. 2006, 3266.
[6] a) I. L. Fedushkin, A. S. Nikipelov, K. A. Lyssenko, J. Am.
Chem. Soc. 2010, 132, 7874; b) I. L. Fedushkin, M. V. Moska-
lev, A. N. Lukoyanov, A. N. Tishkina, E. V. Baranov, G. A.
Abakumov, Chem. Eur. J. 2012, 18, 11264; c) I. L. Fedushkin,
A. S. Nikipelov, A. G. Morozov, A. A. Skatova, A. V. Cherka-
sov, G. A. Abakumov, Chem. Eur. J. 2012, 18, 255; d) I. L.
Fedushkin, M. V. Moskalev, E. V. Baranov, G. A. Abakumov,
J. Organomet. Chem. 2013, 747, 235; e) I. L. Fedushkin, O. V.
Kazarina, A. N. Lukoyanov, A. A. Skatova, N. L. Bazyakina,
A. V. Cherkasov, E. Palamidis, Organometallics 2015, 34, 1498.
[7] a) S. Cacchi, Pure Appl. Chem. 1990, 62, 713; b) S. Cacchi, J.
Organomet. Chem. 1999, 576, 42; c) C. Nevado, A. M. Echav-
arren, Synthesis 2005, 167; d) T. Kitamura, Eur. J. Org. Chem.
2009, 1111; e) A. V. VasilЈev, Russ. J. Org. Chem. 2009, 45, 1;
f) Y. Yamamoto, Chem. Soc. Rev. 2014, 43, 1575.
[8] S. Varghese, S. Nagarajan, M. R. Benzigar, A. Mano, Z. A. Al-
othman, G. A. G. Raj, A. Vinu, Tetrahedron Lett. 2012, 53, 1485.
[9] J. S. Yadav, B. V. Subba Reddy, S. Sengupta, S. K. Biswas, Syn-
thesis 2009, 8, 1301.
1
benzene (9:1). H NMR (200 MHz, CDCl3, 20 °C): δ = 7.50 (d, J
= 6.4 Hz, 2 H, CH arom), 7.30–7.15 (m, 8 H, CH arom), 6.96 (s,
1 H, CH arom), 6.90 (s, 1 H, CH arom), 5.95 (s, 1 H, CH), 1.78
(s, 3 H, CH3), 1.29 (s, 9 H, CH3), 0.82 (s, 9 H, CH3) ppm.
Single-Crystal X-ray Structure Determination: The X-ray data for
4 and 5 were collected at 100 K with Agilent Xcalibur E and Bruker
D8 QUEST diffractometers, respectively, with monochromated
Mo-Kα radiation (λ = 0.71073 Å) using the ω-scan technique. The
structures were solved by direct methods and were refined on F2
using SHELXTL.[18] SCALE3 ABSPACK[19] (for 4) and SAD-
ABS[20] (for 5) were used to perform area-detector scaling and ab-
sorption corrections. All non-hydrogen atoms in 4 and 5 were
found from Fourier syntheses of electron density, and were refined
anisotropically. Hydrogen atoms were placed in calculated posi-
tions and were refined using the “riding model” with Uiso(H) =
1.2Ueq of their parent atoms [or Uiso(H) = 1.5Ueq for the hydrogen
atoms in CH3 groups]. The H atoms of the OH groups in 4 and 5
were located from Fourier synthesis and refined isotropically. A
solvent molecule of benzene was found in the crystal of 4. CCDC-
1402892 (for 4) and -1402893 (for 5) contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from the Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.
[10] C. Bour, V. Gandon, Coord. Chem. Rev. 2014, 279, 43.
[11] V. I. Minkin, Chem. Rev. 2004, 104, 2751.
[12] Y. Liu, J. Qian, S. Lou, J. Zhu, Z. Xu, J. Org. Chem. 2010, 75,
1309 and reference therein.
[13] H. Eshghi, G. H. Zohuri, S. Damavandi, M. Vakili, Chin.
Chem. Lett. 2010, 21, 1423.
[14] J. Yadav, B. S. Reddy, S. K. Biswas, S. Sengupta, Tetrahedron
Lett. 2009, 50, 5798.
[15] a) V. K. Rao, G. M. Shelke, R. Tiwari, K. Parang, A. Kumar,
Org. Lett. 2013, 15, 2190; b) G. Sartori, A. Pastorío, C. Porta,
A. Arienti, R. Maggi, N. Moretti, G. Gnappi, Tetrahedron Lett.
1995, 36, 9177.
[16] A. A. Paulovicova, U. El-Ayaan, K. Shibayama, T. Morita, Y.
Fukuda, Eur. J. Inorg. Chem. 2001, 2641.
[17] I. L. Fedushkin, A. N. Lukoyanov, A. N. Tishkina, G. K. Fu-
kin, K. A. Lyssenko, M. Hummert, Chem. Eur. J. 2010, 16,
7563.
Acknowledgments
This work was supported by the Russian Science Foundation (pro-
ject no. 14-13-01063).
[18] G. M. Sheldrick, SHELXTL v. 6.14, Structure Determination
Software Suite, Bruker AXS, Madison, Wisconsin, USA, 2003.
[19] SCALE3 ABSPACK, Empirical Absorption Correction,
CrysalisPro Software Package, Agilent Technologies, Yarnton,
U.K., 2012.
[1] a) R. van Asselt, E. E. C. G. Gielens, R. E. Rulke, C. J. Elsevier,
J. Chem. Soc., Chem. Commun. 1993, 1203; b) R. van Asselt,
C. J. Elsevier, Organometallics 1994, 13, 1972; c) R. van Asselt,
C. J. Elsevier, W. J. J. Smeets, A. L. Spek, Inorg. Chem. 1994,
33, 1521; d) R. van Asselt, C. J. Elsevier, W. J. J. Smeets, A. L. [20] G. M. Sheldrick, SADABS v. 2012/1, Bruker/Siemens Area De-
Spek, R. Benedix, Recl. Trav. Chim. Pays-Bas 1994, 113, 88; e)
R. van Asselt, E. E. C. G. Gielens, R. E. Rulke, K. Vrieze, C. J.
Elsevier, J. Am. Chem. Soc. 1994, 116, 977; f) R. van Asselt, E.
Rijnberg, C. J. Elsevier, Organometallics 1994, 13, 706; g) R.
tector Absorption Correction Program, Bruker AXS, Madison,
Wisconsin, USA, 2012.
Received: May 27, 2015
Published Online: July 31, 2015
5788
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 5781–5788