RSC Advances
Paper
9 S. M. Hein, J. B. Gloer, B. Koster and D. J. Malloch, Nat. Prod.,
2001, 64, 809.
10 M. Pour, M. Spulak, V. Balsanek, J. Kunes, P. Kubanova and
V. Butcha, Bioorg. Med. Chem., 2003, 11, 2843.
11 L. M. Levy, G. M. Cabrera, J. E. Wright and A. M. Seldes,
Phytochemistry, 2003, 62, 239.
12 G. Grossmann, M. Poncioni, M. Bornand, B. Jolivet,
M. Neuburger and U. Sequin, Tetrahedron, 2003, 59, 3237.
13 S. Hanessian, R. Y. Park and R. Y. Yang, Synlett, 1997, 4, 351.
14 S. Hanessian, R. Y. Park and R. Y. Yang, Synlett, 1997, 4, 353.
15 A. Choudhury, F. Jin, D. Wang, Z. Wang, G. Xu, D. Nguyen,
J. Castoro, M. E. Pierce and P. N. Confalone, Tetrahedron
Lett., 2003, 44, 247.
16 N. Hazeri, M. T. Maghsoodlou, N. Mahmoudabadi,
R. Doostmohammadi and S. Salahi, Curr. Organocatal.,
2014, 1, 45–50.
k2k1½1ꢂ½2ꢂ½3ꢂ
Rate ¼
(14)
k2½3ꢂ þ k
ꢀ1
According to the above assumption, k2 is a rate determining
step, therefore it is logical to express kꢀ1 [ k2[3].
As a result, rate law becomes:
k2k1½1ꢂ½2ꢂ½3ꢂ
Rate ¼
(15)
k
ꢀ1
herein, the overall order of recent rate law is three and is not
compatible with the rate law arising from UV-vis experiment
(rate ¼ kovr[1][2]), so the second step could not be a rate deter-
mining step.
4. Conclusions
17 R. Doostmohammadi, M. T. Maghsoodlou, N. Hazeri and
S. M. Habibi-Khorassani, Res. Chem. Intermed., 2013, 39,
4061.
18 R. Doostmohammadi and N. Hazeri, Lett. Org. Chem., 2013,
10, 199.
Kinetics and mechanism of the reactions between para-
substituted anilines 1 and diethyl acetylenedicarboxylate 2 with
benzaldehyde 3 were investigated in formic acid and the below
results were obtained:
A mechanism involving three steps was proposed for the
reactions. The overall order of reaction followed second-order
kinetics and the partial orders with respect to para-substituted
aniline, diethyl acetylenedicarboxylate and benzaldehyde were
one, one and zero, respectively. Also, the rst step of the reac-
tion is recognized as a rate-limiting step according to the
experimental data. The electron donating group on substituted
aniline more stabilized the transition state than the electron
withdrawing group and with decreasing the activation energy
the value of rate constant (k1) was speed up. The rate of reaction
was also accelerated by increasing the temperature and was in
agreement with Arrhenius, Eyring equations and the transition
state equations.
19 M. S. Narayana, et al., Tetrahedron, 2009, 65, 5251.
20 R. M. Mohammad, et al., C. R. Chim., 2014, 17, 131.
21 F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry,
Part A, Structure Mechanisms Kluwer Academic Press, New
York, 2000.
¨
22 O. J. Nielsen, J. Sehested, S. Langer, E. Ljungstrom and
¨
I. Wangberg, Chem. Phys. Lett., 1995, 238, 359.
23 V. V. Ivanov and C. Decker, Polym. Int., 2001, 50, 113.
´
24 M. C. Almandoz, Y. A. Davila, M. I. Sancho, E. I. Gasull and
S. E. Blanco, Spectrochim. Acta, Part A, 2010, 77, 51.
25 L. L. Lu, Y. H. Li and X. Y. Lu, Spectrochim. Acta, Part A, 2009,
74, 829.
26 J. J. C. Erasmus, M. M. Conradie and J. Conradie, React.
Kinet., Mech. Catal., 2012, 105, 233.
27 B. P. Kalyan and K. S. Gupta, Transition Met. Chem., 2012, 37,
671.
28 A. K. Chandra, J. Mol. Model., 2012, 18, 4239.
29 L. Sandhiya, P. Kolandaivel and K. Senthilkumar, Struct.
Chem., 2012, 23, 1475.
Acknowledgements
We gratefully acknowledge nancial support from the Research
Council of the University of Sistan and Baluchestan.
30 M. Pandeeswaran and K. P. Elango, J. Solution Chem., 2009,
38, 1558.
References
1 N. B. Carter, A. E. Nadany and J. B. Sweeney, J. Chem. Soc., 31 S. M. Habibi Khorassani, A. Ebrahimi, M. T. Maghsoodlou,
Perkin Trans. 1, 2002, 2324.
M. Shahraki and D. Price, Analyst, 2011, 136, 1713.
2 Q. H. Chen, P. N. Praveen and E. E. Knaus, Bioorg. Med. 32 M. Dehdab, S. M. Habibi-Khorassani and M. Shahraki, Catal.
Chem., 2006, 14, 7898. Lett., 2014, 144, 1790.
3 J. Boukouvalas, S. Cote and B. Ndzi, Tetrahedron Lett., 2007, 33 S. M. Habibi-Khorassani, M. T. Maghsoodlou, E. Aghdaei
48, 105. and M. Shahraki, Prog. React. Kinet. Mech., 2012, 37, 301.
4 A. Zarghi, P. N. Praveen and E. E. Knaus, Bioorg. Med. Chem., 34 M. Shaharaki, S. M. Habibi-Khorassani, A. Ebrahimi,
2007, 15, 1056.
M. T. Maghsoodlou and A. Paknahad, Prog. React. Kinet.
Mech., 2012, 37, 321.
35 M. Shahraki and S. M. Habibi-Khorassani, J. Phys. Org.
Chem., 2015, 28, 396.
5 M. Braun, A. Hohmann, J. Rahematpura, C. Buhne and
S. Grimme, Chem.–Eur. J., 2004, 10, 4584.
6 F. Bellina, E. Falchi and R. Rossi, Tetrahedron, 2003, 59, 9091.
7 S. Takahashi, A. Kubota and T. Nakata, Tetrahedron Lett., 36 S. M. Habibi-Khorassani, A. Ebrahimi, M. T. Maghsoodlou,
2002, 43, 8661.
O.
Asheri,
M.
Shahraki,
N.
Akbarzadeh
and
8 S. Padakanti, M. Pal and K. R. Yeleswarapu, Tetrahedron,
2003, 59, 7915.
Y. Ghalandarzehi, Int. J. Chem. Kinet., 2013, 45, 596.
52514 | RSC Adv., 2015, 5, 52508–52515
This journal is © The Royal Society of Chemistry 2015