realized. Initial examination shows that the two silylenes could
be used as ligands for transition metal complexes. These results
showed that N-substituents may have significant effects on the
structure of the silylene metal complexes. The reactivity studies
of 4 and 5, especially their transition metal complexes, and the
synthesis of the other N-substituted heterocyclic silylenes are
currently in progress.
refined anisotropically and hydrogen atoms by a riding model (SHELXL-
97).11 Crystal data for4: C20H24N2Si, Fw = 320.50, monoclinic, space group
◦
˚
P21/c, a = 8.2595(17), b = 13.842(3), c = 16.171(3) A, b = 97.06(3) , V =
1834.9(6) A , Z = 4, rcalcd = 1.160 g cm-3 13 920 reflections, 3234 unique
3
˚
(Rint = 0.0642)R1 = 0.0631 (I > 2s(I)), wR2 = 0.1694 (all data). 5:
C26H36N2Si, Fw = 404.66, monoclinic, space◦group C2, a = 20.089(4), b
3
˚
˚
= 6.4762(13), c = 20.030(4) A, b = 102.71(3) , V = 2576.3 (9) A , Z = 4,
rcalcd = 1.043 g cm-3 15 860 reflections, 6011 unique (Rint = 0.0408) R1 =
0.0489 (I > 2s(I)), wR2 = 0.1315 (all data). 7·C7H8: C67H92N4NiSi2, Fw =
1068.34, orthorhombic, space group Pbcn, a = 13.558(3), b = 18.331(4),
c = 24.290(5) A, V = 6037(2) A , Z = 4, rcalcd = 1.175 g cm-3 38 920
reflections, 5323 unique (Rint = 0.0684) R1 = 0.0684 (I > 2s(I)), wR2 =
0.1772 (all data).
3
˚
˚
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (20725205) and 111 plan for support of this work.
1 M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov, H. P. Verne,
A. Haaland, M. Wagner and N. Metzler, J. Am. Chem. Soc., 1994, 116,
2691.
2 (a) R. West and M. Denk, Pure Appl. Chem., 1996, 68, 785; (b) B.
Gehrhus, M. F. Lappert, J. Heinicke, R. Boese and D. Blaser, J. Chem.
Soc., Chem. Commun., 1995, 1931; (c) J. Heinicke, A. Oprea, M. K.
Kindermann, T. Karpati, L. Nyulaszi and T. Veszprem, Chem.–Eur. J.,
1998, 4, 541; (d) M. Kira, S. Ishida, T. Iwamoto and C. Kabuto, J. Am.
Chem. Soc., 1999, 121, 9722; (e) M. Driess, S. Yao, M. Brym, C. van
Wullen and D. Lentz, J. Am. Chem. Soc., 2006, 128, 9628; (f) C. W.
So, H. W. Roesky, J. Magull and R. B. Oswald, Angew. Chem., Int. Ed.,
2006, 45, 3948.
3 (a) For reviews on silylenes and silylene metal complexes, see: M. Haaf,
T. A. Schmedake and R. West, Acc. Chem. Res., 2000, 33, 704; (b) N. J.
Hill and R. West, J. Organomet. Chem., 2004, 689, 4165; (c) B. Gehrus
and M. F. Lappert, J. Organomet. Chem., 2001, 617–618, 209; (d) M.
Kira, J. Organomet. Chem., 2004, 689, 4475; (e) R. Waterman, P. G.
Hayes and T. D. Tilley, Acc. Chem. Res., 2007, 40, 712.
4 (a) A. J. Arduengo, III, H. V. R. Dias, R. L. Harlow and M. Kline,
J. Am. Chem. Soc., 1992, 114, 5530; (b) A. J. Arduengo III, S. F. Gamper,
J. C. Calabrese and F. Davidson, J. Am. Chem. Soc., 1994, 116, 4391;
(c) L. Jafarpour, E. D. Stevens and S. P. Nolan, J. Organomet. Chem.,
2000, 606, 49; (d) A. J. Arduengo, III, R. Krafczyk and R. Schmutzler,
Tetrahedron, 1999, 55, 14523.
5 (a) A. J. Arduengo III, Acc. Chem. Res., 1999, 32, 913; (b) D. Bourissou,
O. Guerret, F. P. Gabba and G. Bertrand, Chem. Rev., 2000, 100, 39;
(c) S. Wu¨rtz and F. Glorius, Acc. Chem. Res., 2008, 41, 1523; (d) F. E.
Hahn and M. C. Jahnke, Angew. Chem., Int. Ed., 2008, 47, 3122.
6 (a) H. H. Karsch, P. A. Schluter, F. Bienlein, M. Herker, E. Witt, A.
Sladek and M. Heckel, Z. Anorg. Allg. Chem., 1998, 624, 295; (b) R. J.
Baker, C. Jones, D. P. Mills, G. A. Pierce and M. Waugh, Inorg. Chim.
Acta, 2008, 361, 427.
Notes and references
‡ 4: A solution of 2 (1.95 g, 5.0 mmol) in THF (70 mL) was added to
a suspension of potassium graphite (1.35 g, 10.0 mmol) at -78 ◦C. The
reaction mixture was stirred for 4 d at low temperature. The volatiles
were removed, and the residue was extracted with n-hexane (80 mL).
After filtration, the yellow filtrate was concentrated and stored at -40 ◦
C
overnight to yield yellow crystals of 4 (0.69 g, 43.1%). M.p. 110–112 ◦C.
1H NMR (C6D6): d 2.17 (s, 6H, p-CH3), 2.25 (s, 12H, o-CH3), 6.29 (s,
2H, NCH), 6.83 (m, 4H, ArH), 13C NMR (C6D6): d 18.5 (p-CH3), 21.0
(o-CH3), 124.4 (HCCH), 129.3, 134.8, 135.8, 140.3 (ArC). 29Si NMR
(C6D6): d 77.8. Anal. found for C20H24N2Si: C 74.92, H 7.41, N 8.68. Calc.
C 74.95, H 7.55, N 8.74. 5: It was prepared similarly to 4 and obtained
as yellow crystals (0.49 g, 60.8%). M.p. 131 ◦C. 29Si NMR (C6D6): d 76.7.
Anal. found for C26H36N2Si: C, 76.51, H, 8.66, N, 6.81. Calc. C 77.17, H
8.97, N 6.92. 6: A solution of 4 (0.64 g, 2.0 mmol) and Ni(COD)2] (0.27 g,
1.0 mmol) in THF (50 mL) was stirred for 24 h at room temperature.
The solvents were removed, and the remaining solid was crystallized from
toluene at -40 ◦C to yield yellow crystals of 6 (0.43 g, 53%). M.p. 192 ◦
C
(dec). 1H NMR (C6D6): d 1.35 (m, 4H, CH2), 1.97 (m, 4H, CH2), 2.05 (s,
12H, p-CH3), 2.20 (s, 24H, o-CH3), 3.93 (s, 4H, CH), 6.18 (s, 4H, NCH),
6.79 (s, 8H, ArH). 13C NMR (C6D6): d 18.5 (p-CH3), 20.9 (o-CH3), 32.1
(CH2), 79.5 (CH), 123.3 (HCCH), 129.2, 135.3, 135.5, 141.1 (Ar–C). Anal.
found for C48H60N4NiSi2: C 71.52, H 7.86, N 6.92. Calc. C 71.36, H 7.49,
N 6.94. 7: it was prepa◦red similarly to 6 and obtained as yellow crystals
(0.68 g, 64%). M.p. 232 C (dec). 1H NMR (C6D6): d 0.36 (d, 6H, CHMe2),
1.04 (d, 6H, CHMe2), 1.23 (t, 12H, CHMe2), 1.32 (t, 12H, CHMe2), 1.32
(m, 4H, CH2), 1.38 (d, 12H, CHMe2), 2.10 (s, 3H, PhCH3), 2.26 (m, 2H,
CH2), 2.59 (m, 2H, CH2), 3.10 (m, 2H, CHMe2), 3.17 (m, 2H, CHMe2),
3.53 (m, 2H, CHMe2), 3.77 (m, 2H, CHMe2), 3.90 (m, 2H, CH), 4.51 (m,
2H, CH), 6.06 (d, 2H, HCCH), 6.16 (d, 2H, HCCH), 7.02–7.35 (m, 17H,
Ar-H). 13C NMR (C6D6): d 23.3, 23.8, 24.0, 26.7, 27.3, 27.6, 27.8, 28.1,
28.3, 28.5, 30.0, 30.2 (CHMe2), 34.0, 35.0 (CH2), 80.4, 80.9 (CH),21.4,
125.7, 128.5, 129.3, 137.9 (toluene-C), 123.6, 123.9, 124.0, 124.8 (HCCH),
125.1, 125.4, 140.8, 141.2, 146,3, 146,4, 147.1, 147.2 (Ar–C). Anal. found
C67H92N4NiSi2: C 75.34, H 8.74, N 5.22. Calc. C 75.32, H 8.68, N 5.24.
§ The X-ray data were collected on a Bruker Smart-CCD diffractometer
7 H. M. Tuononen, R. Roesler, J. L. Dutton and P. J. Ragogna, Inorg.
Chem., 2007, 46, 10693.
8 (a) T. A. Schmedake, M. Haaf, B. J. Paradise, D. Powell and R. West,
Organometallics, 2000, 19, 3263; (b) B. Gehrhus, P. B. Hitchcock, M. F.
Lappert and H. Maciejewski, Organometallics, 1998, 17, 5599.
9 P. Macchi, D. M. Proserpio and A. Sironi, J. Am. Chem. Soc., 1998,
120, 1447.
10 G. M. Sheldrick, SHELXS-90/96, Program for Structure Solution, Acta
Crystallogr., Sect. A, 1990, 46, 467.
11 G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refine-
ment, University of Goettingen, Goettingen, Germany, 1997.
˚
using graphite-monochromated Mo Ka radiation (l = 0.71073 A) at
113 K. The structure was solved by direct methods (SHELXS-97)10 and
refined by full-matrix least squares on F2. All non-hydrogen atoms were
5446 | Dalton Trans., 2009, 5444–5446
This journal is
The Royal Society of Chemistry 2009
©