The Journal of Organic Chemistry
Note
dilute HCl, and the solvent was removed. The crude mixture was
dissolved in hexane, washed with water (3×) and brine (3×), and
dried over MgSO4. Distillation yielded 6.4 g (80% conversion) of
coupled product along with 2,2′-dimethyl-2,2′-bithiophene, bithio-
phene, and starting material. (Af,Pf) = (6.40 g, 80%); 1H NMR
(CDCl3, 300 MHz) δ (ppm): 7.06−7.10 (dd, 1H), 6.88−6.91 (t, 1H),
6.74−6.78 (dd, 1H), 2.51 (s, 3H). 13C{1H} (CDCl3, 500 MHz) δ
(ppm): 15.9, 109.1, 126.1, 130.1, 141.7.
S.; Lindhardt, A. T.; Norrby, P.-O.; Skrydstrup, T. J. Am. Chem. Soc.
2011, 134, 443. (d) McMullin, C. L.; Jover, J.; Harvey, J. N.; Fey, N.
Dalton Trans. 2010, 39, 10833.
(4) Massera, C.; Frenking, G. Organometallics 2003, 22, 2758.
(5) Zenkina, O. V.; Karton, A.; Freeman, D.; Shimon, L. J. W.;
Martin, J. M. L.; van der Boom, M. E. Inorg. Chem. 2008, 47, 5114.
(6) Bryan, Z. J.; McNeil, A. J. Chem. Sci. 2013, 4, 1620.
(7) (a) Sheina, E. E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough,
R. D. Macromolecules 2004, 37, 3526. (b) Miyakoshi, R.; Yokoyama,
A.; Yokozawa, T. J. Am. Chem. Soc. 2005, 127, 17542.
(8) Bridges, C. R.; McCormick, T. M.; Gibson, G. L.; Hollinger, J.;
Seferos, D. S. J. Am. Chem. Soc. 2013, 135, 13212.
(9) Bryan, Z. J.; McNeil, A. J. Macromolecules 2013, 46, 8395.
(10) (a) Zenkina, O. V.; Karton, A.; Freeman, D.; Shimon, L. J. W.;
Martin, J. M. L.; van der Boom, M. E. Inorg. Chem. 2008, 47, 5114.
(b) Lanni, E. L.; Locke, J. R.; Gleave, C. M.; McNeil, A. J.
Macromolecules 2011, 44, 5136.
Computational Methods. Modeling the intramolecular OA of a
zerovalent nickel with haloarene substrates was done with density
functional theory (DFT) using the B3LYP functional,22 which yields
accurate molecular geometries for transition-metal complexes.23 All
geometry optimizations and frequency computations used the 6-31G*
basis set for H, C, O, P, and S24,25 and the LANL2DZ basis set and
effective core potential (ECP) for halogens and nickel.26 Final
energetics were computed with the B3LYP-D3 functional, which
appends the Grimme dispersion correction27 to B3LYP, along with a
TZ2P basis set28 contracted as (5s2p/3s2p) for H, (10s6p2d/5s3p2d)
for C and O, and (14s10p2d/7s5p2d) for P and S, as well as the
LANL2TZ(f) basis set and ECP for nickel and the LANL08d basis set
and ECP for halogens.29 This scheme is denoted as B3LYP-D3/TZ2P-
LANL2TZ(f)-LANL08d. Electronic energies were corrected for zero-
point vibrations. All computations employed a radial, angular (75, 302)
grid with the QChem 4.0 package.30 To validate our method, rigorous
coupled-cluster computations were done for the complexation of
Ni(dhpe) + ethene (Table S7). CCSD/TZ2P-LANL2TZ(f) gives a
binding energy of 45.6 kcal mol−1, similar to the 43.4 kcal mol−1 found
by B3LYP-D3/TZ2P-LANL2TZ(f). Transition state theory (TST)
was used to determine theoretical KIEs for nickel insertion.12
Theoretical KIEs were benchmarked against experimental KIEs for
the Diels−Alder reaction of s-trans-isoprene and maleic anhydride.31
(11) Vo, L. K.; Singleton, D. A. Org. Lett. 2004, 6, 2469.
(12) Smith, I. W. M. Kinetics and dynamics of elementary gas reactions;
Butterworth & Co. Publishers Ltd.: Wobrun, MA, 1980.
(13) Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. 1995, 117,
9357.
(14) Marshall, N.; Sontag, S. K.; Locklin, J. Macromolecules 2010, 43,
2137.
(15) Helm, L.; Merbach, A. E. Chem. Rev. 2005, 105, 1923.
(16) Seeman, J. I. Chem. Rev. 1983, 83, 83.
(17) Kozuch, S.; Shaik, S. Acc. Chem. Res. 2010, 44, 101.
(18) (a) Vechorkin, O.; Proust, V.; Hu, X. J. Am. Chem. Soc. 2009,
131, 9756. (b) Beryozkina, T.; Senkovskyy, V.; Kaul, E.; Kiriy, A.
Macromolecules 2008, 41, 7817.
(19) (a) Tkachov, R.; Senkovskyy, V.; Komber, H.; Kiriy, A.
Macromolecules 2011, 44, 2006. (b) Doubina, N.; Paniagua, S. A.;
Soldatova, A. V.; Jen, A. K. Y.; Marder, S. R.; Luscombe, C. K.
Macromolecules 2011, 44, 512.
(20) (a) Shi, L.; Chu, Y.; Knochel, P.; Mayr, H. Org. Lett. 2009, 11,
3502. (b) Shi, L.; Chu, Y.; Knochel, P.; Mayr, H. J. Org. Chem. 2009,
74, 2760. (c) Shi, L.; Chu, Y.; Knochel, P.; Mayr, H. Org. Lett. 2012,
14, 2602.
(21) (a) Alger, T. D.; Solum, M.; Grant, D. M.; Silcox, G. D.;
Pugmire, R. J. Anal. Chem. 1981, 53, 2299. (b) Luukko, P.; Alvila, L.;
Holopainen, T.; Rainio, J.; Pakkanen, T. T. J. Appl. Polym. Sci. 1998,
69, 1805.
(22) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(23) (a) Niu, S.; Hall, M. B. Chem. Rev. 2000, 100, 353. (b) Xu, Z.-F.;
Xie, Y.; Feng, W.-L.; Schaefer, H. F. J. Phys. Chem. A 2003, 107, 2716.
(24) Dill, J. D.; Pople, J. A. J. Chem. Phys. 1975, 62, 2921.
(25) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon,
M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
(26) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(27) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.
2010, 132, 154104.
(28) Gonzales, J. M.; Cox, R. S.; Brown, S. T.; Allen, W. D.; Schaefer,
H. F. J. Phys. Chem. A 2001, 105, 11327.
(29) Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput.
2008, 4, 1029.
(30) Shao, Y.; Fusti-Molnar, L.; Jung, Y.; Kussmann, J.; Ochsenfeld,
C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.;
O’Neill, D. P.; Distasio, R. A., Jr.; Lochan, R. C.; Wang, T.; Beran, G. J.
O.; Besley, N. A.; Herbert, J. M.; Yeh Lin, C.; Van Voorhis, T.; Hung
Chien, S.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.;
Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.;
Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.;
Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C.-P.;
Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.;
Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P.
A.; Min Rhee, Y.; Ritchie, J.; Rosta, E.; David Sherrill, C.; Simmonett,
A. C.; Subotnik, J. E.; Lee Woodcock, H., III; Zhang, W.; Bell, A. T.;
Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre,
ASSOCIATED CONTENT
* Supporting Information
■
S
KIE determination, 13C NMR spectra, benchmark of theoretical
KIE calculations, benchmark of DFT energetics, total electronic
energies, and optimized Cartesian coordinates of all stationary
points. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Authors
■
Author Contributions
∥These authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
(CHE 1058631 and DMR 0953112).
■
REFERENCES
■
(1) (a) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972,
94, 4374. (b) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011,
111, 1417. (c) Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem.
Commun. 1972, 144. (d) Yamamoto, T.; Wakabayashi, S.; Osakada, K.
J. Organomet. Chem. 1992, 428, 223.
(2) (a) Churchill, D. G.; Janak, K. E.; Wittenberg, J. S.; Parkin, G. J.
Am. Chem. Soc. 2003, 125, 1403. (b) Jones, W. D. Acc. Chem. Res.
2002, 36, 140. (c) Gom
111, 4857.
́
ez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011,
(3) (a) Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc.
2008, 130, 15258. (b) Li, Z.; Jiang, Y.-Y.; Fu, Y. Chem.Eur. J. 2012,
18, 4345. (c) Gøgsig, T. M.; Kleimark, J.; Nilsson Lill, S. O.; Korsager,
E
dx.doi.org/10.1021/jo402259z | J. Org. Chem. XXXX, XXX, XXX−XXX