4
Tetrahedron Letters
which indicated that the reaction did not proceed through a
7719; (h) Cruz-Acosta, F.; Santos-Exposito, A.; Armas P. D.; Garcıa-
Tellado, F. Chem. Commun. 2009, 44, 6839–6841; (i) Wang, J.; Masui,
Y.; Onaka, M. Eur. J. Org. Chem. 2010, 9, 1763–1771; (j) Galleti, P.;
Pori, M.; Giacomini, D. Eur. J. Org. Chem. 2011, 20, 3896–3903; (k)
Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947–6983.
Selected reviews: (a) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1699–
1712; (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102,
1731–1770; (c) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62,
2439–2463; (d) Godula, K.; Sames, D. Science 2006, 312, 67–72; (e)
Bergman, R. G. Nature 2007, 446, 391–393; (f) Que, L. Jr.; Tolman, W.
B. Nature 2008, 455, 333–340; (g) Christmann, M. Angew. Chem., Int.
Ed. 2008, 47, 2740.
radical pathway. As mentioned above, only trace of cyanation
product yielded without preactivation, which suggested that
conversion of N,N-dimethylanilines into iminium ion and
successively nucleophilic attack of cyanide anion was not
promoted by PIFA. Kita’s group19 have reported active
hypervalent iodine(III)-CN intermediate were generated from
PIFA and TMSCN in the presence of BF3•Et2O. Attempts in
isolation and spectroscopic detection of the hypervalent iodine(III)
intermediate that were precipitated during the period of
preactivation were made but failed due to their instability. So a
similar hypervalent iodine intermediate is speculated to be
formed in our reaction, an oxidation of 2a is followed to give 5
and then H-absorption of trifluoroacetyl anion affords the
iminium ion intermediate 6 which is attacked by cyanide ion to
furnish 3a.
3.
4.
(a) Murahashi, S.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc.
2003, 125, 15312–15313; (b) North, M. Angew. Chem., Int. Ed. 2004,
43, 4126–4128; (c) Murahashi, S.; Komiya, N.; Terai, H. Angew. Chem.,
Int. Ed. 2005, 44, 6931–6933; (d) Murahashi, S.; Nakae, T.; Terai, H.;
Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005–11012; (e) Murahashi,
S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490–1501 (f) Verma, S.;
Jain, S. L.; Sain, B. Catal. Lett. 2011, 141, 882–885; (g) Pan, Y.; Wang,
S.; Kee, C. W.; Dubuisson, E. et al. Green Chem. 2011, 13, 3341-3344;
(h) Reddy, K. H. V.; Satish, G. Reddy, V. P.; Kumar, B. S. P. A.;
Nageswar, Y. V. D. RSC Adv. 2012, 2, 11084–11088.
CH3
PIFA + TMSCN
Ph
N
3a
5.
6.
Singhal, S.; Jain, S. L.; Sain, B. Chem. Commun. 2009, 17, 2371–2372.
Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.; Zhu, C. Chem. Commun.
2011, 47, 2354–2356.
CH2CN
in situ
X
NC
Ph
Ph
7.
8.
Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 835–842.
(a) Han, W.; Ofial, A. R. Chem. Commun. 2009, 33, 5024–5026; (b)
Singhal, S.; Jain, S. L.; Sain, B. Adv. Synth. Catal. 2010, 352, 1338–
1344; (c) Liu, P.; Liu, P.; Wong, E. L.-M..; Xiang, S.; Che, C.-M. Chem.
Sci. 2011, 2, 2187–2195; (d) Rao, K. T. V.; Haribabu, B.; Prasad, P. S.
S.; Lingaiah, N. ChemCatChem 2012, 4, 1173–1178.
I
I
Ph
CH3
N
NC
Ph
CH3
CH2
H3C
N
N
Ph
CH2
H
CH3
CF3COO
CN
2a
X = OCOCF3 or CN
5
6
9.
Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134,
5317−5325.
10. Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47,
12709–12711.
11. Rueping, M.; Zoller, J.; Fabry, D. C.; Poscharny, K.; Koenigs, R. M.;
Weirich, T. E.; Mayer, J. Chem.–Eur. J. 2012, 18, 3478–3481.
12. Sakai, N.; Mutsuro, A.; Ikeda, R.; Konakahara, T. Synlett 2013, 24,
Scheme 4. The proposed reaction mechanism for the cyanation
of tertiary amines.
In conclusion, we have developed an oxidative cyanation to
accomplish α-aminonitriles, which directly oxidates sp3 C-H
bond using a hypervalent iodine reagent combined with TMSCN
in the absence of metal catalysts to form C-C bond and provides
a useful tool for the synthesis of various nitrogen-containing
compounds. Further studies about synthetic utility of this
versatile oxidative system and more mechanistic details are
presently pursued in our laboratories.
1283–1285.
13. Lin, A.; Peng, H.; Abdukader, A.; Zhu, C. Eur. J. Org. Chem. 2013, 32,
7286–7290.
14. (a) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.;
Mismash, B.; Woodward, J. K.; Simonsen, A. J. Tetrahedron Lett. 1995,
36, 7975–7978; (b) Hari, D. P.; Konig, B. Org. Lett. 2011, 13, 3852–
3855; (c) Liu, L.; Wang, Z.; Fu, X.; Yan, C.-H. Org. Lett. 2012, 14,
5692–5695; (d) Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K.
R. Org. Lett. 2013, 15, 1092–1095.
15. (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523−2584; (b)
Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656−3665; (c) Dohi, T.;
Takenaga, N.; Goto, A.; Fujioka, H.; Kita, Y. J. Org. Chem. 2008, 73,
Acknowledgments
−
−1197
; (e)
We gratefully acknowledge funding from the National Natural
Science Foundation of China (No. 21372265), the Natural
7365 7368; (d) Zhdankin, V. V. J. Org. Chem. 2011, 76, 1185
Moteki, S.; Usui, A.; Zhang, T.; Solorio A., Cesar R.; Maruoka, K.
Angew. Chem., Int. Ed. 2013, 52, 8657−8660; (g) Dohi, T.; Kita, Y.
ChemCatChem 2014, 6, 76–78.
Science
Foundation
Project
of
CQ
CSTC
(No.
cstc2013jcyjA0217), the Fundamental Research Funds for the
Central Universities (No. CQDXWL-2013-Z012 and No.
CDJZR14225502), and the Chongqing University Postgraduatesʼ
Innovation Project.
16. (a) Shen, H.; Li, J.; Liu, Q.; Pan, J.; Huang, R.; Xiong, Y. J. Org. Chem.
2015, doi: 10.1021/acs.joc.5b01102. Also see selected reports on
conversion of cyano group: (b) Kahne, D.; Collum, D. B. Tetrahedron
−5014
Lett. 1981, 22, 5011
; (c) Liu, X.; Qin, B.; He, B.; Feng, X. J. Am.
Chem. Soc. 2005, 127, 12224–12225; (d) Akula, R.; Xiong, Y.; Ibrahim,
−10735
H. RSC Adv. 2013, 3, 10731
; (e) Ma, H.; He, Y.; Huang, R.;
Zhang, X.; Pan, J.; Li, J.; He, C.; Ling, X.; Wang, X.; Xiong, Y. Chin.
Chem. Lett. 2014, 25, 1327−1330; (f) Wang, Y.-F.; Qiu, J.; Kong, D.;
Gao, Y.; Lu, F.; Karmaker, P. G.; Chen, F.-X. Org. Biomol. Chem. 2015,
13, 365–368.
References and notes
1.
(a) Dyker, G. Angew. Chem., Int. Ed. 1997, 36, 1700–1702; (b) Lucet,
D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37,
2580–2627; (c) Enders, D.; Shilvock, J. P.; Chem. Soc. Rev. 2000, 29,
359–373 and references cited therein.
17. Saitoh, T.; Yoshida, S.; Ichikawa. J. Org. Lett. 2004, 6, 4563–4565.
18. (a) Ling, X.; Xiong, Y.; Huang, R.; Zhang, X.; Zhang, S.; Chen, C. J.
Org. Chem. 2013, 78, 5218–5226; (b) Pan, J.; Li, J.; Huang, R.; Zhang,
X.; Shen, H.; Xiong, Y. Tetrahedron 2015, 71, 5341–5346.
2.
(a) Ishitani, H.; Komiyama, S.; Kobiyashi, S. Angew. Chem., Int. Ed.
1998, 37, 3186–3188; (b) Liu, B.; Feng, X.; Chen, F.; Zhang, G.; Cui,
X.; Jiang, Y. Synlett 2001, 1551–1554; (c) Surendra, K.; Krishnavani, N.
S.; Mahesh, N.; Rao, K. R. J. Org. Chem. 2006, 71, 2532–2534; (d)
Xiong, Y.; Huang, X.; Gou, S.; Huang, J.; Wen, Y.; Feng, X. Adv. Synth.
19. Dohi, T.; Morimoto, K.; Takenaga, N.; Goto, A.; Maruyama, A.;
Kiyono, Y.; Tohma, H.; Kita, Y. J. Org. Chem. 2007, 72, 109–116
Supplementary Material
−544
; (e) Prakash, G. K. S.; Mathew, T.; Panja, C.;
Catal. 2006, 348, 538
Alconcel, S.; Vaghoo, H.; Do, C.; Olah, G. A. Proc. Natl. Acad. Sci. U.
S. A. 2007, 104, 3703–3706; (f) Huang, J.; Liu, X.; Wen, Y.; Qin, B.;
Feng, X. J. Org. Chem. 2007, 72, 204–208; (g) Wen, Y.; Xiong, Y.;
Chang, L.; Huang, J.; Liu, X.; Feng, X. J. Org. Chem. 2007, 72, 7715–
Supplementary data (detailed experimental description and
condition optimization; characterization data of NMR for all
1
compounds; details of copies of the H NMR and 13C NMR)
associated with this article can be found in the online version.