522
K. Okrasa et al. / Tetrahedron: Asymmetry 13 (2002) 519–522
4. Okrasa, K.; Guibe´-Jampel, E.; Therisod, M. J. Chem.
3. Experimental
Soc., Perkin Trans. 1 2000, 1077–1079.
5. Neidleman, S. L.; Amon, W. P., Jr.; Geigert J.; USP 4
284 723 (Chem. Abstr. 1981, 95, 167173).
6. van de Velde, F.; Lourenco, N. D.; Bakker, M.; van
Rantwijk, F.; Sheldon, R. A. Biotech. Bioeng. 2000, 69,
286–291.
7. Trost, E. M.; Baskir, I.; Fisher, L. 5th International
Symposium on Biocatalysis and Biotransformation,
Darmstadt, September 2001
8. Fernandez-Lafuente, R.; Rodrigez, V.; Guisan, J. M.
Enzym. Microb. Technol. 1998, 23, 28–33.
9. Gabler, M.; Hensel, M.; Fisher, L. Enzym. Microb. Tech-
nol. 2000, 27, 605–611.
3.1. Typical procedure
The sulphide (1 mmol) and immobilised TvDAO (125
mg) were suspended in a mixture of aqueous DL-alanine
solution (20 mL, 2.8 mmol) and CiP (1 mL, previously
dialysed against 0.5 M NaCl). The pH of the mixture
was adjusted to 8.5 and the mixture was mechanically
stirred either at rt or 40°C until completion of the
reaction (Table 1). The formed sulfoxide was then
extracted with ethyl acetate, and purified if necessary
on a short silica gel column. The enantiomeric excess
was determined by HPLC on a Chiracel OD-H column
(iso-hexane/propan-2-ol 95:5). The degree of conversion
and chemical purity of the sulfoxides was determined
by GC and NMR.
10. Dey, E. S.; Miller, J. R.; Kovacevic, S.; Kosbach, K.
Biochem. Mol. Biol. Int. 1990, 20, 1169–1178.
11. Xu, D. K.; Lin, H.; Chen, H. Y. Anal. Chim. Acta 1997,
349, 215–219.
12. Tuynman, A.; Vink, M. K. S.; Dekker, H. L.; Schoe-
maker, H. E.; Wever, R. Eur. J. Biochem. 1998, 256,
906–913.
13. Adam, W.; Mock-Knoblanch, C.; Saha-Moller, C. R. J.
Org. Chem. 1999, 64, 4834–4839.
14. Tuynman, A.; Luftje-Spelberg, J.; Kooter, I. M.; Schoe-
maker, H. E.; Wever, R. J. Biol. Chem. 2000, 275,
3025–3030.
15. von Korff, R. W. In Methods in Enzymology; Lowen-
stein, J. M., Ed.; Academic Press: New York, 1969; Vol.
XIII, pp. 520–521.
16. Greenstein, J. P.; Winitz, M. Chemistry of the Amino
Acids; John Wiley and Sons: New York, 1961; Vol. 2, pp.
1782–1783.
17. In order to prevent loss of volatile substrates, use of a
closed vessel under an atmosphere of oxygen is the best
choice.
4. Conclusions
The devised TvDAO/CiP system mediates the prepara-
tive oxidation of sulphides by oxygen, leading to the
corresponding sulfoxides in high yield and with good
enantiomeric excess. Immobilised oxidase and its low
cost substrates ensure a ‘cheap and green’ synthetic
entry to chiral sulfoxides. Product isolation is easy and
background non-selective oxidation, often observed
with slow reacting peroxidase, is suppressed by self-con-
trolled hydrogen peroxide production.
Acknowledgements
We are grateful to Dr. Wohlgemuth and Fluka for the
supply of TvDAO, and to Dr. Schneider and
Novozyme for the supply of CiP.
18. Folli, U.; Iarossi, D.; Montanari, F.; Torre, G. J. Chem.
Soc. C 1968, 1317–1322.
19. Colonna, S.; Gaggero, N.; Carrea, G.; Pasta, P. Tetra-
hedron Lett. 1994, 48, 9103–9104; the authors report an
enantiomeric excess of 20% in oxidation of thioanisole
catalysed by MP11 but with a very high MP-11/substrate
ratio of 1/6.
20. Immobilised commercial TvDAO loses 30% activity after
the first washing with water, probably as an indication of
the presence of some non-immobilised enzyme adsorbed
on the support. No further loss of activity of recycled
TvDAO was observed even after three runs.
References
1. van de Velde, F.; van Rantwijk, F.; Sheldon, R. A.
Trend. Biotechnol. 2001, 19, 73–80.
2. Colonna, S.; Gaggero, N.; Richelni, C.; Pasta, P. Trend.
Biotechnol. 1999, 17, 163–168.
3. van Deurzen, M. P. J.; van Rantwijk, F.; Scheldon, R. A.
Tetrahedron 1997, 53, 13183–13220.