KABIRI ESFAHANI ET AL.
7 of 8
[9] J. Xia, R. Qiu, S. Yin, X. Zhang, S. Luo, C.‐T. Au, K. Xia, W.‐Y.
Wong, J. Organomet. Chem. 2010, 695, 1487.
of the TEM images of catalyst before and after ten times
recovery showed that the size distribution of 30–60 nm (aver-
age ~ 40 nm) unchanged after recovery (Figure 3). Addition-
ally, the loading of the SO3H function in recovered SMNPs
calculated again from elemental analysis and ion exchange
pH analysis, showed intact loading of approximately
[10] H. Li, H. Y. Zeng, H. W. Shao, Tetrahedron Lett. 2009, 50, 6858.
[11] Z. Li, X. Ma, J. Liu, X. Feng, G. Tian, A. Zhu, J. Mol. Catal. A:
Chem. 2007, 272, 132.
[12] M. F. Jacobsen, L. Ionita, T. Skrydstrup, J. Org. Chem. 2004, 69,
0.9 mmol g−1
.
4792.
For a better comparison of the catalytic performance of
Fe3O4@SiO2@PrSO3H, a set of individual catalytic experi-
ments were conducted by employing H2SO4, p‐TSOH,
KHSO4 and CH3SO3H under the same reaction condition
(Table 3, entries 3–6). These results compared with some
homogeneous and heterogeneous Brønsted acid catalysts
under different conditions (Table 3, entries 7–14). It should
be noted that Fe3O4@SiO2@PrSO3H with lower catalyst load-
ing and under solvent free condition exhibits higher activity in
Mannich reaction. In comparison with other heterogeneous
catalysts (Table 3). SMNPs can recycle more easily from the
reaction mixture with an external magnet and reuse for several
times without decrease in catalytic activity.
[13] S. Kobayashi, R. Matsubara, H. Kitagawa, Org. Lett. 2002, 4, 143.
[14] I. Komoto, S. Kobayashi, Chem. Commun. 1842, 2001.
[15] S. V. Goswami, P. B. Thorat, A. V. Chakrawar, S. R. Bhusare, Mol.
Divers. 2013, 17, 33.
[16] M. Rueping, C. Vila, R. M. Koenigs, K. Poscharny, D. C. Fabry,
Chem. Commun. 2011, 47, 2360.
[17] S. E. Denmark, G. L. Beutner, Angew. Chem. Int. Ed. 2008, 47,
1560.
[18] H. Fujisawa, E. Takahashi, T. Mukaiyama, Chem. Eur. J. 2006, 12,
5082.
[19] E. Takahashi, H. Fujisawa, T. Mukaiyama, Chem. Lett. 2004, 33,
1426.
[20] K. Miura, T. Nakagawa, A. Hosomi, J. Am. Chem. Soc. 2002, 124,
536.
[21] A. Pettignano, L. Bernardi, M. Fochi, L. Geraci, M. Robitzer, N.
4 | CONCLUSIONS
Tanchoux, F. Quignard, New J. Chem. 2015, 39, 4222.
[22] T. Kano, Y. Aota, D. Asakawa, K. Maruok, Chem. Commun. 2015,
51, 16472.
In summary, covalent functionalization of propylsulfonic
acid on core‐shell magnetic nanoparticle gives a heteroge-
neous, green and reusable catalyst for the solvent‐free syn-
thesis of β‐amino carbonyl compounds through Mannich
reaction at room temperature. The advantages of this method
include low catalyst loading, easy separation of catalyst by
external magnet, recyclability of catalyst, simple procedure,
excellent yields and short reaction times. This results reveals
suitable environment for production of β‐amino carbonyl
compounds and this system represents a recyclable solid
acid catalyst.
[23] D. Zareyee, H. Alizadeh, RSC Adv. 2014, 4, 37941.
[24] S. Sahoo, T. Joseph, S. B. Halligudi, J. Mol. Catal. A: Chem. 2006,
244, 179.
[25] T. Akiyama, K. Matsuda, K. Fuchibe, Synlett 2005, 322.
[26] T. Chang, L. He, L. Bian, H. Han, M. Yuana, X. Gao, RSC Adv.
2014, 4, 727.
[27] C. Mukhopadhyay, A. Datta, R. J. Butcher, Tetrahedron Lett. 2009,
50, 4246.
[28] R. O. Duthaler, Angew. Chem. Int. Ed. 2003, 42, 975.
[29] M. O. Ratnikov, M. P. Doyle, J. Am. Chem. Soc. 2013, 135, 1549.
[30] R. K. Sharma, D. Rawat, G. Gaba, Catal. Commun. 2012, 19, 31.
REFERENCES
[31] C. S. Caetanoa, L. Guerreirob, I. M. Onsecab, A. M. Ramosb, J.
[1] Z. Zhang, Y. Zhu, C. Zhou, Q. Liu, H. Lu, Y. Ge, M. Wang, Acta
Pharmacol. Sin. 2014, 35, 664.
Vitalb, J. E. Castanheiro, Appl. Catal. A: General 2009, 359, 41.
[32] Q. Li, F. Meng, B. Zhang, M. Tian, J. Lian, J. Appl. Polym. Sci.
2008, 110, 791.
[2] R. Muller, H. Goesmann, H. Waldmann, Angew. Chem. Int. Ed.
1999, 38, 184.
[33] D. Zareyee, M. Serehneh, J. Mol. Catal. A: Chem. 2014, 391, 88.
[3] N. Risch, M. Arend, B. Westermann, Angew. Chem. Ind. Ed. 1998,
37, 1044.
[34] K. Fukuhara, K. Nakajima, M. Kitano, H. Kato, S. Hayashi, M.
Hara, ChemSusChem 2011, 4, 778.
[35] S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S.
[4] M. Tramontini, L. Angiolini, Mannich Bases. Chemistry and Uses,
CRC, Boca Raton, FL 1994.
Hayashi, M. Hara, J. Am. Chem. Soc. 2009, 131, 12787.
[36] M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi, K.
[5] A. Ying, Z. Li, J. Yang, S. Liu, S. Xu, H. Yan, C. Wu, J. Org.
Chem. 2014, 79, 6510.
Domen, M. Hara, Nature 2005, 438, 178.
[37] D. Zareyee, S. M. Moosavi, A. Alaminezhad, J. Mol. Catal. A:
Chem. 2013, 378, 227.
[6] C. Huang, Y. Yin, J. Guo, J. Wang, B. Fan, L. Yang, RSC Adv.
2014, 4, 10188.
[38] G. Morales, M. Paniagua, J. A. Melero, G. Vicente, C. Ochoa, Ind.
Eng. Chem. Res. 2011, 50, 5898.
[7] Y. Zhang, J. Han, Z. Liu, RSC Adv. 2015, 5, 25485.
[8] R. Qiu, Y. Chen, S. Yin, X. Xua, C. Au, RSC Adv. 2012, 2, 10774.
[39] B. Karimi, D. Zareyee, J. Mater. Chem. 2009, 19, 8665.