The Journal of Organic Chemistry
Page 16 of 17
15. Liu, F.; Vijayakrishnan, B.; Faridmoayer, A.; Taylor, T. A.;
Notes
Parsons, T. B.; Bernardes, G. J. L.; Kowarik, M.; Davis, B. G.,
Rationally Designed Short Polyisoprenol-Linked PglB
Substrates for Engineered Polypeptide and Protein N-
Glycosylation. J. Am. Chem. Soc. 2014, 136 (2), 566-569.
16. Massarweh, A.; Bosco, M.; Iatmanen-Harbi, S.; Tessier, C.;
Auberger, N.; Busca, P.; Chantret, I.; Gravier-Pelletier, C.;
Moore, S. E. H., Demonstration of an oligosaccharide-
diphosphodolichol diphosphatase activity whose subcellular
localization is different than those of dolichyl-phosphate-
dependent enzymes of the dolichol cycle. J. Lipid Res. 2016,
57 (6), 1029-1042.
1
2
3
4
5
6
7
8
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was financially supported in part by JSPS KAKENHI
Grant Number 15H05836 in Middle Molecular Strategy, JSPS
KAKENHI Grant Number 16H01885, JSPS KAKENHI Grant
Number 16H05924, JSPS KAKENHI Grant Number 18H03934,
JSPS KAKENHI Grant Number 19KK0145, JSPS KAKENHI
Grant Number 20H00404, JSPS KAKENHI Grant Number
20K05727, and JSPS KAKENHI Grant Number 20H04709.
9
17. Napiórkowska, M.; Boilevin, J.; Sovdat, T.; Darbre, T.;
Reymond, J.-L.; Aebi, M.; Locher, K. P., Molecular basis of
lipid-linked oligosaccharide recognition and processing by
bacterial oligosaccharyltransferase. Nat. Struct. Mol. Biol.
2017, 24 (12), 1100-1106.
18. Ramírez, A. S.; Boilevin, J.; Lin, C.-W.; Ha Gan, B.; Janser, D.;
Aebi, M.; Darbre, T.; Reymond, J.-L.; Locher, K. P., Chemo-
enzymatic synthesis of lipid-linked GlcNAc2Man5
oligosaccharides using recombinant Alg1, Alg2 and Alg11
proteins. Glycobiology 2017, 27 (8), 726-733.
19. Biellmann, J. F.; Ducep, J. B., Synthese du squalene par
couplage queue a queue. Tetrahedron Lett. 1969, 10 (42),
3707-3710.
20. Altman, L. J.; Ash, L.; Kowerski, R. C.; Epstein, W. W.; Larsen,
B. R.; Rilling, H. C.; Muscio, F.; Gregonis, D. E., Prephytoene
pyrophosphate. New intermediate in the biosynthesis of
carotenoids. J. Am. Chem. Soc. 1972, 94 (9), 3257-3259.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
1. Swiezewska, E.; Danikiewicz, W., Polyisoprenoids: Structure,
biosynthesis and function. Prog. Lipid Res. 2005, 44 (4), 235-
258.
2. Jones, M. B.; Rosenberg, J. N.; Betenbaugh, M. J.; Krag, S.
S., Structure and synthesis of polyisoprenoids used in N-
glycosylation across the three domains of life. BBA-Gen.
Subjects 2009, 1790 (6), 485-494.
3. Hartley, M. D.; Imperiali, B., At the membrane frontier: A
prospectus on the remarkable evolutionary conservation of
polyprenols and polyprenyl-phosphates. Arch. Biochem.
Biophys. 2012, 517 (2), 83-97.
4. Zhang, Q.; Huang, L.; Zhang, C.; Xie, P.; Zhang, Y.;
Ding, S.; Xu, F., Synthesis and biological activity of
polyprenols. Fitoterapia 2015, 106, 184-193.
5. Taguchi Y, F. D., Kohda D, Comparative Analysis of Archaeal
Lipid-linked Oligosaccharides That Serve as Oligosaccharide
Donors for Asn Glycosylation. J. Biol. Chem. 2016, 291 (21),
11042-11054.
6. Eichler, J.; Guan, Z., Lipid sugar carriers at the extremes: The
phosphodolichols Archaea use in N-glycosylation. BBA-Mol.
Cell Biol. L. 2017, 1862 (6), 589-599.
7. Mańkowski, T.; Sasak, W.; Janczura, E.; Chojnacki, T.,
Specificity of polyprenyl phosphates in the in vitro formation
of lipid-linked sugars. Arch. Biochem. Biophys. 1977, 181 (2),
393-401.
8. Palamarczyk, G.; Lehle, L.; Mankowski, T.; Chojnacki, T.;
Tanner, W., Specificity of Solubilized Yeast Glycosyl
Transferases for Polyprenyl Derivatives. Eur. J. Biochem. 1980,
105 (3), 517-523.
9. Löw, P.; Peterson, E.; Mizuno, M.; Takigawa, T.; Chojnacki,
T.; Dallner, G., Reaction of optically active S- and R-forms of
dolichyl phosphates with activated sugars. Biochem. Biophys.
Res. Commun. 1985, 130 (1), 460-466.
10. Löw, P.; Peterson, E.; Mizuno, M.; Takigawa, T.; Chojnacki,
T.; Dallner, G., Effectivity of dolichyl phosphates with
different chain lengths as acceptors of nucleotide activated
sugars. Biosci. Rep. 1986, 6 (7), 677-683.
11. McLachlan, K. R.; Krag, S. S., Substrate specificity of N-
acetylglucosamine 1-phosphate transferase activity in
Chinese hamster ovary cells. Glycobiology 1992, 2 (4), 313-319.
12. Dsouzaschorey, C.; McLachlan, K. R.; Krag, S. S.; Elbein,
A. D., Mammalian Glycosyltransferases Prefer Glycosyl
Phosphoryl Dolichols Rather Than Glycosyl Phosphoryl
Polyprenols as Substrates for Oligosaccharyl Synthesis. Arch.
Biochem. Biophys. 1994, 308 (2), 497-503.
13. McLachlan, K. R.; Krag, S. S., Three enzymes involved in
oligosaccharide-lipid assembly in Chinese hamster ovary
cells differ in lipid substrate preference. J. Lipid Res. 1994, 35
(10), 1861-8.
21. Altman, L. J.; Ash, L.; Marson, S.,
A New, Highly
Stereoselective Synthesis of all trans-Geranylgeraniol.
Synthesis 1974, 1974 (02), 129-131.
22. Terao, S.; Kato, K.; Shiraishi, M.; Morimoto, H., Synthesis of
ubiquinones. Elongation of the heptaprenyl side-chain in
ubiquinone-7. J. Chem. Soc., Perkin Trans. 1 1978, (10), 1101-
1110.
23. Moiseenkov, A. W.; Polunin, E. V.; Semenovsky, A. V., An
easily accessible cisoid isoprenoid synthon. Tetrahedron Lett.
1979, 20 (49), 4759-4760.
24. Naruta, Y., Regio- and stereoselective synthesis of coenzymes
Qn (n = 2-10), vitamin K, and related polyprenylquinones. J.
Org. Chem. 1980, 45 (21), 4097-4104.
25. Kikumasa, S.; Osamu, M.; Seiichi, I.; Toru, K.; Fumio, F., A
STEREOSELECTIVE FORMATION OF (Z)-2-METHYL-2-
ALKENOL BY THE WITTIG REACTION: ITS APPLICATION
TO
A SYNTHESIS OF NERYLACETONE AND (Z,Z)-
FARNESYLACETONE. Chem. Lett. 1981, 10 (12), 1711-1714.
26. Sato, K.; Inoue, S.; Onishi, A.; Uchida, N.; Minowa, N.,
Stereoselective synthesis of solanesol and all-trans-
decaprenol. J. Chem. Soc., Perkin Trans. 1 1981, (0), 761-769.
27. Kikumasa, S.; Osamu, M.; Seiichi, I.; Fumio, F.; Yasusuke, M.,
STEREOSELECTIVE SYNTHESIS OF
A
CISOID C10
ISOPRENOID BUILDING BLOCK AND SOME ALL-CIS-
POLYPRENOLS. Chem. Lett. 1983, 12 (5), 725-728.
28. Grigor'eva, N. Y.; Pinsker, O. A.; Odinokov, V. N.; Tolstikov,
G. A.; Moiseenkov, A. M., Synthesis of racemic octaprenol
ωtttcccsOH and nonaprenol ωtttccccsOH. Bull. Acad. Sci.
USSR, Div. Chem. Sci. 1987, 36 (7), 1426-1432.
29. Inoue, S.; Kaneko, T.; Takahashi, Y.; Miyamoto, O.; Sato, K.,
Stereoselective total synthesis of (S)-(–)-dolichol-20. J. Chem.
Soc., Chem. Commun. 1987, (13), 1036-1037.
30. Jaenicke, L.; Siegmund, H.-U., Synthesis and characterization
of dolichols and polyprenols of designed geometry and chain
length. Chem. Phys. Lipids 1989, 51 (3), 159-170.
31. Veselovskii, V. V.; Koptenkova, V. A.; Novikova, M. A.;
Moiseenkov, A. M., Synthesis of dolichol-type (S)-hexa- and
(S)-heptaprenols. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1989,
38 (9), 1887-1891.
32. Veselovsky, V. V.; Grigorieva, N. Y.; Moiseenkov, A. M.,
Synthesis of compounds relating to polyprenols. Chem. Phys.
Lipids 1989, 51 (3), 147-157.
33. Désaubry, L.; Nakatani, Y.; Ourisson, G., Toward higher
polyprenols under ‘prebiotic’ conditions. Tetrahedron Lett.
2003, 44 (36), 6959-6961.
34. Hesek, D.; Lee, M.; Zajíček, J.; Fisher, J. F.; Mobashery, S.,
Synthesis and NMR Characterization of (Z,Z,Z,Z,E,E,ω)-
Heptaprenol. J. Am. Chem. Soc. 2012, 134 (33), 13881-13888.
14. Rush, J. S.; van Leyen, K.; Ouerfelli, O.; Wolucka, B.;
Waechter, C. J., Transbilayer movement of Glc-P-dolichol
and its function as a glucosyl donor: protein-mediated
transport of a water-soluble analog into sealed ER vesicles
from pig brain. Glycobiology 1998, 8 (12), 1195-1205.
ACS Paragon Plus Environment