160
P. Seth et al. / Journal of Molecular Catalysis A: Chemical 365 (2012) 154–161
O
2
Electronic supplementary data
O
N
O
3
,
5
Mn(III)
-
D
T
B
O 2
Enzyme kinetics data for 1 and 3, ESI-MS spectra, EPR spec-
tra. Crystal data, bond lengths and bond angles in the metal
coordination spheres of 1–3. CCDC-872032 (for 1), -872033
(for 2), -872034 (for 3) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
Q
N
O
-.
O
S
O
O
O
N
O
Mn(III)
Mn(II)
N
N
N
O
O
O
O
O
-.
Mn(III)
Acknowledgments
O
N
N
S
We thank EPSRC and the University of Reading for funds for the
X-Calibur system for data of 1 and 2. We thank DST-FIST, India-
funded Single Crystal Diffractometer Facility at the Department
of Chemistry, University of Calcutta, Kolkata, India for data of 3.
We are also thankful to UGC for Junior Research Fellowship to P.S
(UGC/20/Jr. Fellow (Sc) dated 10.01.2011).
O
O
C
Mn(III)
TB
D
N
N
5-
,
O
OH
3
H2O
S= Solvent
Appendix A. Supplementary data
Scheme 3. Formation of different intermediate species during the course of catechol
oxidation.
Supplementary data associated with this article can be
References
Mn(II) species within the reaction mixture to be 2.106 × 10−3 M i.e.
[1] L.I. Simándi, Catalytic Activation of Dioxygen by Metal Complexes, Kluwer,
Dordrecht, 1992.
[2] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Chem. Rev. 96 (1996) 2563.
[3] E.B. Meunier, Biomimetic Oxidations Catalyzed by Transition Metal Complexes,
Imperial College Press, London, 2000.
[4] J. Reedijk, Bioinorganic Catalysis, Dekker, New York, 1993.
[5] M. Costas, M.P. Mehn, M.P. Jensen, L. Que Jr., Chem. Rev. 104 (2004) 939.
[6] E.A. Lewis, W.B. Tolman, Chem. Rev. 104 (2004) 1047.
[7] R. Hage, A. Lienke, Angew. Chem. 118 (2006) 212.
[8] P. Gentschev, N. Möller, B. Krebs, Inorg. Chim. Acta 442 (2000) 300.
[9] M.G. Alvarez, G. Alzuet, J. Borras, S.G. Granda, J.M.M. Bernardo, J. Inorg. Biochem.
96 (2003) 443.
[10] K. Selmeczi, M. Réglier, M. Giorgi, G. Speier, Coord. Chem. Rev. 245 (2003) 191.
[11] I.A. Koval, P. Gamez, C. Belle, K. Selmeczi, J. Reedijk, Chem. Soc. Rev. 35 (2006)
814.
[12] A. Guha, K.S. Banu, A. Banerjee, T. Ghosh, S. Bhattacharya, E. Zangrando, D. Das,
J. Mol. Catal. A 338 (2011) 51.
initiated by dioxygen binding to the metal centre of 2, thus forming
complex reacts with 3,5-DTBC to produce the [L2Mn(O2)–3,5-
DTBSQ] adduct (Scheme 3) and finally 3,5-DTBQ is eliminated.
The turnover rate of complex 1 is comparable to those values
reported for mononuclear Mn(III).[10,16] The presence of one labile
water molecule in the coordination sphere of Mn(III) enhances
the rate of catechol oxidation. The cationic part of complex 2
also contains two labile water molecules, but the lower activity
of this complex may be attributed to the fact that the anionic
part contains bridging nitrite, which is a poorer leaving group
˚
˚
(Mn(3) O(3) = 2.308 A and Mn(2) O(5) = 2.236 A). Between 2 and
[13] J. Kaizer, G. Baráth, R. Csonka, G. Speier, L. Korecz, A. Rockenbauer, L. Párkan˜yi,
˚
˚
3, probably the M M distance (5.971 A for 2 and 3.458 A for 3)
is the deciding factor for the rate of catecholase activity. Besides,
in 3, two Mn(III) centersꢀ are connected through a weak phenox-
J. Inorg. Biochem. 102 (2008) 773.
[14] J. Kaizer, R. Csonka, G. Baráth, G. Speier, Trans. Met. Chem. 32 (2007) 1047.
[15] A. Majumder, S. Goswami, S.R. Batten, M.S.E. Fallah, J. Ribas, S. Mitra, Inorg.
Chim. Acta 359 (2006) 2375.
[16] K.S. Banu, T. Chattopadhyay, A. Banerjee, M. Mukherjee, A.S. Bhattacharya, G.K.
Patra, E. Zangrando, D. Das, Dalton Trans. (2009) 8755.
˚
ido bridge (Mn(1) O(30) = 2.520 A) which may be responsible for
higher catalytic activity.
[17] S. Mukherjee, T. Weyhermüller, E. Bothe, K. Wieghardt, P. Chaudhuri, Dalton
Trans. (2004) 3842.
[18] G. Blay, I. Fernández, J.R. Pedro, R. Ruiz, T.T. Sánchez, E. Pardo, F. Lloret, M.C.
Munoz, J. Mol. Catal. A 250 (2006) 20.
[19] J.J.R. Frausto da Silva, R.J.P. Williams, The Biological Chemistry of the Elements,
Clarendon Press, Oxford, 1991, p. 370.
4. Conclusions
[20] V.L. Pecoraro (Ed.), Manganese Redox Enzymes, VCH, New York, 1992.
[21] H.L. Shyu, H.H. Wei, Y. Wang, Inorg. Chim. Acta 290 (1999) 8.
[22] Z. Lü, M. Yuan, F. Pan, S. Gao, D. Zhang, D. Zhu, Inorg. Chem. 45 (2006) 3538.
[23] H. Miyasaka, R. Clérac, W. Wernsdorfer, L. Lecren, C. Bonhomme, K.I. Sugiura,
M. Yamashita, Angew. Chem. 116 (2004) 2861.
[24] P. Kar, R. Biswas, M.G.B. Drew, Y. Ida, T. Ishida, A. Ghosh, Dalton Trans. 40 (2011)
3295.
[25] M. Hariharan, F.L. Urbach, Inorg. Chem. 8 (1969) 556.
[26] CrysAlis, Oxford Diffraction Ltd., Abingdon, U.K., 2006.
[27] G.M. Sheldrick, Acta Cryst. A64 (2008) 112.
[28] ABSPACK, Oxford Diffraction Ltd., Oxford, U.K., 2005.
[29] SAINT, Version 6.02; SADABS, Version 2.03, Bruker AXS, Inc., Madison, WI, 2002.
[30] N. Lehnert, U. Cornelissen, F. Neese, T. Ono, Y. Noguchi, K. Okamoto, K. Fujisawa,
Inorg. Chem. 46 (2007) 3916.
[31] P. Kar, P.M. Guha, M.G.B. Drew, T. Ishida, A. Ghosh, Eur. J. Inorg. Chem. (2011)
2075.
[32] H. Komatsuzaki, Y. Nagasu, K. Suzuki, T. Shibasaki, M. Satoh, F. Ebina, S. Hikichi,
M. Akita, Y. Moro-oka, J. Chem. Soc., Dalton Trans. (1998) 511.
[33] R. Than, A.A. Feldmann, B. Krebs, Coord. Chem. Rev. 182 (1999) 211.
[34] M.U. Triller, D. Pursche, W.Y. Hsieh, V.L. Pecoraro, A. Rompel, B. Krebs, Inorg.
Chem. 42 (2003) 6274.
In this paper we present three Mn(III) complexes of salen-type
di-Schiff base ligands that are structurally related to the proposed
active site of catechol oxidase enzyme. These three complexes
(1–3) exhibit high catalytic activity for the oxidation of 3,5-di-
tert-butylcatechol to 3,5-di-tertbutylquinone. They belong to the
class of synthetic catechol oxidase model compounds showing
first-order rate dependence at lower substrate concentration and
saturation kinetics at higher substrate concentrations. The ESI-MS
positive spectrum of 2 in the presence of 3,5-DTBC indicates the
formation of bis(-oxo)dimanganese(III,III) as an intermediate. The
characteristic six line EPR spectra of the complex in the presence
of 3,5-DTBC is evidence for the formation of manganese(II)-
semiquinonate as an intermediate species during the catalytic
oxidation of 3,5-DTBC. Therefore, the present study contributes to
the development of biomimetic manganese(III) complexes that can
catalyze the reaction performed by catechol oxidases.