6
Yuan Y, et al. Sci China Chem January (2013) Vol.56 No.1
List B. Asymmetric enamine catalysis. Chem Rev, 2007, 107(12):
471–5569
for all final products.
5
1
1
(a) Eyrisch O, Fessner WD. Disaccharide mimetics by enzymatic
tandem aldol additions. Angew Chem Int Ed Engl, 1995, 34(15):
2
011 Select Project in Scientific and Technological Activities for Returned
1
639–1641; (b) Kimura T, Vassilev VP, Shen GJ, Wong CH. Enzy-
Scholars of Chongqing Personnel Bureau, and the Doctoral Foundation of
Southwest University (SWU112019) are gratefully acknowledged.
matic synthesis of -Hydroxy--amino acids based on recombinant
D- and L-threonine aldolases. J Am Chem Soc, 1997, 119(49): 11734–
1
1742; (c) Němec P, Altmann J, Marhold S, Burda H, Oelschläger
1
(a) Knowles JR. Enzyme catalysis: Not different, just better. Nature,
991, 350(6314): 121–124; (b) Reymond JL. Fluorescence assays for
biotransformations. In: Fessner, WD, Anthonsen T Eds. Modern Bi-
ocatalysis: Stereoselective and Environmentally Friendly Reactions.
Weinheim: Wiley-VCH Verlag GmbH, 2009, 15–16
O'Brien PJ, HerschlagD. Catalytic promiscuity and the evolution of
new enzymatic activities. Chem Biol, 1999, 6(4): R91–R105
(a) Hult K, Berglund P. Enzyme promiscuity: Mechanism and appli-
cations. Trends Biotechnol, 2007, 25(5): 231–238; (b) Ward OP,
Singh A. Enzymatic asymmetric synthesis by decarboxylases. Curr
Opin Biotechnol, 2000, 11(6): 520–526
(a) Bornscheuer UT, Kazlauskas RJ. Hydrolases in Organic Synthesis:
Regio and Stereoselective Transformations. Weinheim: Wiley-VCH
Verlag GmbH, 2005, 5–24; (b) Gotor-Fernández V, Brieva R, Gotor
V. Lipases: Useful biocatalysts for the preparation of pharmaceuticals. J
Mol Catal B: Enzym, 2006, 40(3–4): 111–120
HHA. Neuroanatomy of magnetoreception: The superior colliculus
involved in magnetic orientation in a mammal. Science, 2001,
294(5541): 366–368; (d) Greenberg WA, Varvak A, Hanson SR,
Wong K, Huang H, Chen P, Burk MJ. Development of an efficient,
scalable, aldolase-catalyzed process for enantioselective synthesis of
statin intermediates. Proc Natl Acad Sci USA, 2004, 101(16): 5788–
5793
1
2
3
12 Tanaka F, Barbas CF. Antibody-catalyzed aldol reactions. In:
Mahrwald R, Ed. Modern Aldol Reactions. Weinheim: Wiley-VCH
Verlag GmbH, 2008. 273–310
13 List B. Amine-catalyzed aldol reactions. In: Mahrwald R, Ed. Mod-
ern Aldol Reactions. Weinheim: Wiley-VCH Verlag GmbH, 2008.
161–200
14 (a) Branneby C, Carlqvist P, Magnusson A, Hult K, Brinck T, Ber-
glund P. Carbon−carbon bonds by hydrolytic enzymes. J Am Chem
Soc, 2002, 125(4): 874–875; (b) Li C, Feng XW, Wang N, Zhou YJ,
Yu XQ. Biocatalytic promiscuity: the first lipase-catalysed asymmetric
aldol reaction. Green Chem, 2008, 10(6): 616–618; (c) Li C, Zhou YJ,
Wang N, Feng XW, Li K, Yu XQ. Promiscuous protease-catalyzed
aldol reactions: A facile biocatalytic protocol for carbon–carbon bond
formation in aqueous media. J Biotechnol, 2010, 150(4): 539–545
15 Li HH, He YH, Yuan Y, Guan Z. Nuclease p1: A new biocatalyst for
direct asymmetric aldol reaction under solvent-free conditions. Green
Chem, 2011, 13(1): 185–189
4
5
(a) Rogers RS. Companies turn to biocatalysis. Chem Eng News,
1
999, 77(29): 87–92; (b) Busto E, Gotor-Fernandez V, Gotor V. Hy-
drolases: Catalytically promiscuous enzymes for non-conventional
reactions in organic synthesis. Chem Soc Rev, 2010, 39(11): 4504–
4
523; (c) Wu Q, Liu BK, Lin XF. Enzymatic promiscuity for organic
synthesis and cascade process. Curr Org Chem, 2010, 14(17): 1966–
988; (d) Humble MS, Berglund P. Biocatalytic promiscuity. Eur J
1
Org Chem, 2011, 2011(19): 3391–3401
6
(a) Torre O, Alfonso I, Gotor V. Lipase catalysed Michael addition of
secondary amines to acrylonitrile. Chem Commun, 2004, (15): 1724–
16 Li HH, He YH, Guan Z. Protease-catalyzed direct aldol reaction.
Catal Commun, 2011, 12(7): 580–582
1
725; (b) Svedendahl M, Hult K, Berglund P. Fast carbon–carbon
bond formation by a promiscuous lipase. J Am Chem Soc, 2005,
27(51): 17988–17989; (c) Cai JF, Guan Z, He YH. The lipase-
catalyzed asymmetric C-C Michael addition. J Mol Catal B: Enzym,
011, 68(3–4): 240–244; (d) Kitazume T, Ishikawa N. Introduction of
17 Xie BH, Li W, Liu Y, Li HH, Guan Z, He YH, The enzymatic
asymmetric aldol reaction using acidic protease from Aspergillus
usamii. Tetrahedron, 2012, 68(15): 3160–3164
18 He YH, Li HH, Chen YL, Xue Y; Yuan Y, Guan Z. Chymopapain-
catalyzed direct asymmetric aldol reaction. Adv Synth Catal, 2012,
354(4): 712–719
19 Bommarius AS, Riebel BR. Introduction to enzyme technology. In:
Buchholz K, Kasche V, Bornscheuer UT, Eds. Biocatalysts and En-
zyme Technology. Weinheim: Wiley-VCH Verlag GmbH & Co.
KGaA, 2005. 1–18
20 (a) Carrea G, Ottolina G, Riva S. Role of solvents in the control of
enzyme selectivity in organic media. Trends Biotechnol, 1995, 13(2):
63–70; (b) Hailing PJ. Thermodynamic predictions for biocatalysis in
nonconventional media: Theory, tests, and recommendations for ex-
perimental design and analysis. Enzyme Microb Technol. 1994, 16(3):
178–206; (c) Klibanov AM. Improving enzymes by using them in
organic solvents. Nature, 2001, 409(6817): 241–246; (d) Zaks A,
Klibanov AM. Enzyme-catalyzed processes in organic solvents. Proc
Natl Acad Sci USA, 1985, 82(10): 3192–3196
1
2
center of chirality into fluorocompounds by microbial transformation
of 2, 2, 2-trifluoroethanol. Chem Lett, 1984, 10: 1815–1818; (e)
Kitazume T, Ikeya T, Murata K. Synthesis of optically active tri-
fluorinated compounds: Asymmetric Michael addition with hydro-
lytic enzymes. J Chem Soc, Chem Commun, 1986, 0(17): 1331–1333
(a) Wu WB, Wang N, Xu JM, Wu Q, Lin XF. Penicillin G acylase
catalyzed Markovnikov addition of allopurinol to vinyl ester. Chem
Commun, 2005, (18): 2348–2350; (b) Wu WB, Xu JM, Wu Q, Lv DS,
Lin XF. Promiscuous acylases-catalyzed Markovnikov addition of
N-heterocycles to vinyl esters in organic media. Adv Synth Catal,
7
2
006, 348(4-5): 487–492
8
9
Li K, He T, Li C, Feng XW, Wang N, Yu XQ. Lipase-catalysed di-
rect Mannich reaction in water: utilization of biocatalytic promiscuity
for C-C bond formation in a “one-pot” synthesis. Green Chem, 2009,
1
1(6): 777–779
21 (a) Hudson EP, Eppler RK, Beaudoin JM, Dordick JS, Reimer JA,
Clark DS. Active-site motions and polarity enhance catalytic turnover
of hydrated subtilisin dissolved in organic solvents. J Am Chem Soc,
2009, 131(12): 4294–300; (b) Costes D, Wehtje E, Adlercreutz P.
Hydroxynitrile lyase-catalyzed synthesis of cyanohydrins in organic
solvents parameters influencing activity and enantiospecificity.
Enzyme Microb Technol, 1999, 25(3-5): 384–391; (c) Wehtje E, Kaur
J, Adlercreutz P, Chand S, Mattiasson B. Water activity control in
enzymatic esterification processes. Enzyme Microb Technol, 1997,
21(7): 502–510; (d) Duwensee J, Wenda S, Ruth W, Kragl U. Li-
pase-catalyzed polycondensation in water: A new approach for poly-
ester synthesis. Org Process Res Dev, 2010, 14(1): 48–57
(a) Wang JL, Li X, Xie HY, Liu BK, Lin XF. Hydrolase-catalyzed
fast Henry reaction of nitroalkanes and aldehydes in organic media. J
Biotechnol, 2010, 145(3): 240–243; (b) Tang RC, Guan Z, He YH,
Zhu W. Enzyme-catalyzed Henry (nitroaldol) reaction. J Mol Catal B:
Enzym, 2010, 63(1–2): 62–67
(a) Schinzer D. The Aldol reaction in natural product synthesis: The
epothilone story. In: Mahrwald R, Ed. Modern Aldol Reactions.
Weinheim: Wiley-VCH Verlag GmbH, 2008. 311–328; (b) Nicolaou
KC, Vourloumis D, Winssinger N, Baran PS. The art and science of
total synthesis at the dawn of the twenty-first century. Angew Chem
Int Ed, 2000, 39(1): 44–122; (c) Mukherjee S, Yang JW, Hoffmann S,
1
0