C O M M U N I C A T I O N S
Table 2. AgOAc-Catalyzed Asymmetric Cycloadditiona
Supporting Information Available: Spectroscopic data, experimen-
tal details, computational methods, and complete ref 12. This material
References
(1) For reviews, see: (a) Zanoni, G.; Castronovo, F.; Franzini, M.; Vidari,
G.; Giannini, E. Chem. Soc. ReV. 2003, 32, 115. (b) Sibi, M. P.; Liu, M.
Curr. Org. Chem. 2001, 5, 719.
entry
R1/R2 in 2
ligand
yieldb/3
ee (%)c
(2) For selected examples, see: (a) Du, D. M.; Lu, S. F.; Fang, T.; Xu, J. J.
Org. Chem. 2005, 70, 3712. (b) Bertozzi, F.; Pineschi, M.; Macchia, F.;
Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2002, 4, 2703.
(c) Murakami, M.; Itami, K.; Ito, Y. J. Am. Chem. Soc. 1999, 121, 4130.
(d) Yabu, K.; Masumoto, S.; Yamasaki, S.; Hamashima, Y.; Kanai, M.;
Du, W.; Curran, D. P.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 9908.
(e) Nishibayashi, Y.; Segawa, K.; Ohe, K.; Uemura, S. Organometallics
1995, 14, 5486.
(3) For selected examples, see: (a) Mao, J.; Wan, B.; Zhang, Z.; Wang, R.;
Wu, F.; Lu, S. J. Mol. Catal. A 2005, 225, 33. (b) Lutz, F.; Igarashi, T.;
Kawasaki, T.; Soai, K. J. Am. Chem. Soc. 2005, 127, 12206. (c)
Kawamura, M.; Kobayashi, S. Tetrahedron Lett. 1999, 40, 3213. (d)
Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1998, 63,
5483. (e) Kobayashi, S.; Ishitani, H. J. Am. Chem. Soc. 1994, 116, 4083.
(f) Kobayashi, S.; Ishitani, H.; Hachiya, I.; Araki, M. Tetrahedron 1994,
50, 11623.
1
2
3
4
5
6
7
8
9
10
11d
12d
13d
14d
15e
16e
Ph/Me (2b)
Ph/Me (2b)
1d
1c
1d
1c
1d
1c
1d
1c
1d
1c
1d
1c
1d
1c
1d
1c
95 (3b)
96 (3b)
93 (3c)
98 (3c)
96 (3d)
91 (3d)
95 (3e)
95 (3e)
98 (3f)
91 (3f)
90 (3g)
90 (3g)
96 (3h)
89 (3h)
98 (3i)
98 (3i)
90
-85
90
-87
88
-91
88
-85
91
-87
97
-78
94
-79
36
-92
p-anisyl/Me (2c)
p-anisyl/Me (2c)
4-chlorophenyl/Me (2d)
4-chlorophenyl/Me (2d)
o-toluyl/Me (2e)
o-toluyl/Me (2e)
2-naphthyl/Me (2f)
2-naphthyl/Me (2f)
Ph/Me (2b)
Ph/Me (2b)
o-toluyl/Me (2e)
o-toluyl/Me (2e)
Ph/Me (2b)
(4) For selected examples, see: (a) Berkessel, A.; Mukherjee, S.; Lex, J.
Synlett 2006, 41. (b) Trost, B. M.; Fettes, A.; Shireman, B. T. J. Am.
Chem. Soc. 2004, 126, 2660. (c) Casey, C. P.; Martins, S. C.; Fagan, M.
A. J. Am. Chem. Soc. 2004, 126, 5585. (d) Sibi, M. P.; Gorikunti, U.;
Liu, M. Tetrahedron 2002, 58, 8357.
Ph/Me (2b)
a Conditions: iminoesters 2 (1.0 equiv), dimethyl maleate (1.5 equiv),
AgOAc (3 mol %), ligand (3.3 mol %), concentration ) 0.12 M, at -25 °C.
b Isolated yields. c Determined by HPLC. d t-Butylacrylate was used. e N-
phenylmaleimide was used.
(5) For selected examples, see: (a) Arseniyadis, S.; Valleix, A.; Wagner, A.;
Mioskowski, C. Angew. Chem., Int. Ed. 2004, 43, 3314. (b) Zhou, J.; Ye,
M. C.; Huang, Z. Z.; Tang, Y. J. Org. Chem. 2004, 69, 1309. (c) Kanai,
M.; Koga, K.; Tomioka, K. J. Chem. Soc., Chem. Commun. 1993, 1248.
(d) Johannsen, M.; Jørgensen, K. A. Tetrahedron 1996, 52, 7321.
(6) Selected examples of reversal due to steric effect, pressure, substituents
on coordination atoms, and metal/ligand ratio, see: (a) Kitagawa, O.;
Matsuo, S.; Yotsumoto, K.; Taguchi, T. J. Org. Chem. 2006, 71, 2524.
(b) Kuwano, R.; Sawamura, M.; Ito, Y. Bull. Chem. Soc. Jpn. 2000, 73,
2571. (c) Danjo, H.; Higuchi, M.; Yada, M.; Imamoto, T. Tetrahedron
Lett. 2004, 45, 603. (d) Clyne, D. S.; Mermet-Bouvier, Y. C.; Nomura,
N.; RajanBabu, T. V. J. Org. Chem. 1999, 64, 7601. (e) Nomura, N.;
Mermet-Bouvier, Y. C.; RajanBabu, T. V. Synlett 1996, 745. (f) Evans,
D. A.; Kozlowski, M. C.; Murray, J. A.; Burgey, C. S.; Campos, K. R.;
Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. 1999, 121, 669 and
references cited therein.
Figure 2. The four types of complexes formed by 2b and Ag-1a/1b.
(7) (a) Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43, 2062. (b) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (c) Noyori, R.;
Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. (d) Taylor, M. S.; Jacobsen,
E. N. Angew. Chem., Int. Ed. 2006, 45, 1520 and references cited therein.
(e) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40. (f)
Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424,
146. (g) Du, H.; Zhao, D.; Ding, K. Chem.sEur. J. 2004, 10, 5964. (h)
Deng, X. M.; Cai, P.; Ye, S.; Sun, X. L.; Liao, W. W.; Li, K.; Tang, Y.;
Wu, Y. D.; Dai, L. X. J. Am. Chem. Soc. 2006, 128, 9730. (i) Breit, B.;
Seiche, W. J. Am. Chem. Soc. 2003, 125, 6608. (j) Weis, M.; Waloch,
C.; Seiche, W.; Breit, B. J. Am. Chem. Soc. 2006, 128, 4188.
(8) For examples of reversal of enantioselectivity due to OH or NH2, see:
(a) Hoarau, O.; A¨ıt-Haddou, H.; Daran, J. C.; Cramaile`re, D.; Balavoine,
G. G. A. Organometallics 1998, 18, 4718. (b) Beliczey, J.; Giffels, G.;
Kragl, U.; Wandrey, C. Tetrahedron: Asymmetry 1997, 8, 1529.
(9) For successful examples using Ag, Cu, Zn catalysts, see: (a) Bonini, B.
F.; Boschi, F.; Comes-Franchini, M.; Fochi, M.; Fini, F.; Mazzanti, A.;
Ricci, A. Synlett 2006, 543. (b) Zeng, W.; Zhou, Y.-G. Org. Lett. 2005,
7, 5055. (c) Stohler, R.; Wahl, F.; Pfaltz, A. Synthesis 2005, 1431. (d)
Alemparte, C.; Blay, G.; Jørgensen, K. A.; Org. Lett. 2005, 7, 4569. (e)
Chen, C.; Li, X.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174.
(f) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124,
13400. (g) Liamas, T.; Arraya´s, R. G.; Carretero, J. C. Org. Lett. 2006, 8,
1795. (h) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou,
X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979. (i) Catrera, S.;
Arraya´s, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394. (j)
Gao, W.; Zhang, X.; Raghunath, M. Org. Lett. 2005, 7, 4241. (k)
Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.;
Komatsu, M. Org. Lett. 2003, 5, 5043. (l) Gothelf, A. S.; Gothelf, K. V.;
Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 4236.
(10) Hayashi, T.; Mise, T.; Fukushima, M.; Kagotani, M.; Nagashima, N.;
Hamada, Y.; Matsumoto, A.; Kawakami, S.; Konishi, M.; Yamamoto,
K.; Kumada, M. Bull. Chem. Soc. Jpn. 1980, 53, 1138.
Figure 3. The optimized structures of C2-1b and C2-1a. The hydrogen
atoms that are not involved in the reactions are omitted for clarity. Calculated
at B3LYP/6-31*/Lanl2DZ level.
hence, the enantioselectivity is reversed. According to the above
model, addition of competitive hydrogen-bond donors should
destroy the hydrogen binding, decrease of enantioselectivity should
be observed, and so, cycloaddition of 2a and dimethyl maleate was
performed using AgOAc-1b as catalyst in the presence of additives
(t-amyl alcohol, EtOH) at 0 °C, enantioselectivity was decreased
to 79% and 78% from 83%.14
1H NMR titration experiments and Job’s method were employed
to probe the hydrogen binding between the complex AgOAc-1b
and dimethyl maleate. A significant change of the N-H chemical
shift was observed, and an approximate 1:1 complex was indi-
cated.14
In summary, a successful stereochemical reversal was achieved
in AgOAc catalyzed [3+2] cycloaddition of azomethine ylides by
the formation of hydrogen bonding between ligand and reactant.
Density-functional theory studies proposed a reasonable mechanism
of the reversal of the enantioselectivity. The strategy may provide
some useful hints for ligand design.
(11) (a) Becke, A. D. Phys. ReV. A: At., Mol., Opt. Phys. 1988, 38, 3098. (b)
Becke, A. D. J. Chem. Phys. 1993, 98, 1372, 5648. (c) Lee, C.; Yang,
W.; Parr, R. G. Phys. ReV. B: Condens. Matter Mater. Phys. 1988, 37,
785.
(12) The calculations were performed with Gaussian 03 program: Frisch, M.
J.; et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT,
2004.
(13) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
(14) See Supporting Information for details.
Acknowledgment. We are grateful for the financial support
from National Science Foundation of China (Grant 20532050).
JA067346F
9
J. AM. CHEM. SOC. VOL. 129, NO. 4, 2007 751