ChemComm
Page 4 of 4
DOI: 10.1039/C9CC00939F
3
4
5
6
7
8
G3a
1st
92
90
91
89
92
90
82
73
52
32
85
85
G3ae
G3af
G3ag
G3ah
G3ah,i
2nd
3rd
4th
1st
5
Results indicated that it is possible to fine tune the band gap of graphene by varying
the number of azomethine groups attached. P. A. Denis, F. Iribarne, Chem. Phys.
Lett., 2012, 550, 111.
D. D. Chronopoulos, A. Bakandritsos, P. Lazar, M. Pykal, K. Cepe, R. Zboril, M.
Otyepka, Chem. Mater., 2017, 29, 926.
Q. H. Wang, Z. Jin, K. K. Kim, A. J. Hilmer, G. L. C. Paulus, C.-J. Shih, M.-H. Ham,
J. D. Sánchez-Yamagishi, K. Watanabe, T. Taniguchi, J. Kong, P. Jarillo-Herrero,
M. S. Strano, Nat. Chem., 2012, 4, 724.
X. Fan, R. Nouchi, K. Tanigaki, J. Phys. Chem. C, 2011, 115, 12960–12964.
R. Sharma, J. H. Baik, C. J. Perera, M. S. Strano, Nano Lett., 2010, 10, 398.
6
7
2nd
a See experimental section for details. b Determined 1H NMR. c Pure
8
9
d
e
G2a was used. 3 mL of IPA were added instead of 0.5 mL. 0.12
mol% of Ir/1.5 mmol of acetophenone was used. f 0.12 mol% of Ir/1.5
10 F. M. Koehler, A. Jacobsen, K. Ensslin, C. Stampfer, W. J. Stark, Small, 2010, 6,
1125.
11 G. Diankov, M. Neumann, D. Goldhaber-Gordon, ACS Nano, 2013, 7, 1324.
12 For a revised nomenclature of graphene family, see: A. Bianco, H. M. Cheng, T.
Enoki, Y. Gogotsi, R. H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C. R. Park,
J. M. D. Tascon, J. Zhang, Carbon, 2013, 65, 1.
g
mmol of acetophenone was used. 0.19 mol% of Ir/1.5 mmol of
acetophenone was used. h 1.5 mL of IPA was added, warming for 1.5
i
d. G3a recovered from entry 7/1.3 mmol of acetophenone/1.5 mL
of IPA.
13 P. A. Denis, Chem. Phys. Lett., 2017, 684, 79.
14 J. C. Yuan, G. H. Chen, W. G. Weng, Y. Z. Xu, J. Mater. Chem., 2012, 22, 7929.
15 M. Quintana, K. Spyrou, M. Grzelczak, W. R. Browne, P. Rudolf, M. Prato, ACS
nano, 2010, 4, 3527.
16 G. Bottari, M. A. Herranz, L. Wibmer, M. Volland, L. Rodríguez-Pérez, D. M. Guldi,
A. Hirsch, N. Martín, F. D’Souza, T. Torres Chem.Soc.Rev.,2017,46, 4464.
17 L. Rodríguez-Pérez, M. Á. Herranz, N. Martín, Chem. Commun., 2013, 49, 3721.
18 V.; Bekiari, A. Karakassides, S. Georgitsopoulou, A. Kouloumpis, D. Gournis, V.
Georgakilas, J. Mat. Sci., 2018, 53, 11167.
19 J. Dai, Y. Li, Z. Huang, X. Huang, New J. Chem., 2015, 39, 9586.
20 S. Zhao, H. Wang, L. Xin, J. Cui, Y. Yan, Chem. Asian J., 2015, 10, 1177.
21 J. Huang, Y. Wu, D. Wang, Y. Ma, Z. Yue, Y. Lu, M. Zhang, Z. Zhang, P. Yang, ACS
Appl. Mater. Interf., 2015, 7, 3732.
22 B. Xiao, X. Wang, H. Huang, M. Zhu, P. Yang, Y. Wang, Y. Du, J. Phys. Chem. C,
2013, 117, 21303.
23 G. L. Liu, C. L. Yu, C. C. Chen, W. H. Ma, H. W. Ji, J. C. Zhao, Sci. China: Chem.,
2011, 54, 1622.
24 V. Georgakilas, A. B. Bourlinos, R. Zboril, T. A. Steriotis, P. Dallas, A. K. Stubos,
C. Trapalis, Chem. Commun., 2010, 46, 1766.
25 Y. Hernández, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern,
B. Holland, M. Byrne, Y. K. GunKo, J. J. Boland, P. Niraj, G. Duesberg, S.
Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman,
Nat. Nanotechnol., 2008, 3, 563.
Conclusions
The 1,3-DC of dispersed MLG and stabilized azomethine ylides
originated from thermal 1,2-prototropy imino esters occurred
in unexpected milder conditions than the reported ones for the
analogous 1,3-DC with azomethine ylides generated via
decarboxylative route. To the best of our knowledge, this is the
first example of a graphene material functionalized via imino
esters-based (1,3-DC). This is originated by the stability of the
azomethine ylide. In addition, this ester moiety could be
hydrolyzed and used as oxygen donor site to coordinate iridium
centers, together with the prolinate nitrogen. This Ir-MLG was
very efficient (more than the [Cp*IrCl2]2 itself and iridium
complex anchored to fullerene[42]) in heterogeneous catalyst of
the MPV reduction of acetophenone. G3a proved to be enough
robust (no metal leaching was observed) to be recycled up to
four times. All these set of transformations are highly 26 U. Khan, A. O’Neill, M. Loyta, S. De, J. N. Coleman, Small, 2010, 6, 864.
27 M. Quintana, E. Vázquez, M. Prato, Acc. Chem. Res., 2013, 46, 138.
28 A. C. Ferrari, Solid State Commun., 2007, 143, 47.
29 D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano
reproducible. Considering the wide library of imines available
for this type of reaction, this approach combines the possibility
of a fine tune of the coordination sphere of the metal with the
advantages of a graphene type heterogeneous support.
Lett., 2007, 7, 238.
30 L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Rep. 2009,
473, 51.
31 F. Hof, S. Bosch, J. M. Englert, F. Hauke, A. Hirsch, Angew. Chem. Int. Ed. 2012,
Conflicts of interest
51, 11727.
32 K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, R. Car,
There are no conflicts to declare.
Nano Lett. 2008, 8, 36.
33 (a) Y. Deng, Y. Xie, K. Zoua, X.. Ji J. Mater Chem. A, 2016, 4, 1144. (b) D. Salinas-
Author information
Torres, S. Shiraishi, E. Morallón, D. Cazorla-Amorós. Carbon 2015, 82, 205. (c) M.
J. Mostazo-López, D. Salinas-Torres, R. Ruiz-Rosas, E. Morallón, D. Cazorla-
Amorós, Materials 2019, 12, 1346.
Author Contributions: The manuscript was written through contributions of
all authors. All authors have given approval to the final version of the
manuscript. ‡These authors contributed equally in the experimental work.
34 E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild, R.
Schlögl, Carbon, 2002, 40, 597.
35 V. Selva, E. Selva, P. Merino, C. Nájera, J. M. Sansano, Org. Lett., 2018, 20, 3522.
36 This trans-arrangement was observed during the reaction of C60-fullerene at rt using
a chiral copper(II) complex: M. Suárez, A. Ruíz, L. Almagro, J. Coro, E. E. Maroto,
S. Filippone, D. Molero, R. Martínez-Álvarez, N. Martín, J. Org. Chem., 2017, 82,
4654.
Acknowledgements
We gratefully acknowledge financial support from the Spanish
Ministerio de Economía y Competitividad (MINECO) (projects CTQ2013-
43446-P and CTQ2014-51912-REDC), the Spanish Ministerio de
Economía, Industria y Competitividad, Agencia Estatal de Investigación
37 J. Marco-Martínez, S. Vidal, I. Fernández, S. Filippone, N. Martín, Angew. Chem.
Int. Ed. Engl., 2017, 56, 2136.
(AEI) and Fondo Europeo de Desarrollo Regional (FEDER, EU) (projects 38 When tert-butyl ester G2g was allowed to react with trifluoroacetic acid in DCM
(see ref. 34) and treated with [Cp*IrCl2]2 (0.5 mg/mg graphene) no incorporation of
iridium was detected after XPS analysis of G3g.
39 (a) O. Saidi, J. M. J. Williams, Top. Organomet. Chem., 2011 34, 77. (b) U.
CTQ2015-66080-R, CTQ2016-76782-P and CTQ2016-81797-REDC), the
Generalitat Valenciana (PROMETEOII/2014/017) and the University of
Alicante.
Hintermair, J. Campos, T. P. Brewster, L. M. Pratt, N. D. Schley, R. H. Crabtree.
ACS Catal., 2014, 4, 99.
40 To get a 90% yield in identical conditions, in the presence of [Cp*IrCl2]2, a 1 mol%
of this catalyst was required.
41 This process was not so fast as the reported using N-Heterocyclic Carbenes by
Notes and references
1
Introduction to Graphene: Chemical and Biochemical Applications, A. Pattammattel,
Covalent Attachment on Carbon Nanotubes. M. Blanco, P. Álvarez, C. Blanco, M.
V. Jiménez, J. Fernández-Tornos, J. J. Pérez-Torrente, L. A. Oro, R. Menéndez
ACSCatal. 2013, 3, 1307.
C. V. Kumar, Eds. Elsevier, Oxford, 2017.
2
V. G. Shevchenko, P. M. Nedorezova, A. N. Ozerin, in Graphene Science Handbook:
Electrical and Optical Properties, M. Aliofkhazraei, N. Ali, W. I. Milne, C. S. Ozkan,
S. Mitura, J. L. Gervasoni, Eds. CRC press, Boca Ratón, 2016, chapter 34, 553.
G. M. Vlasceanu, R.-M. Amarandi, M. Ionita, T. Tite, H. Iovu, L. Pilan, J. S. Burns,
Biosensors & Bioelectronics, 2018, 117, 283.
42 S. Vidal, J. Marco-Martínez, S. Filippone, N. Martín, Chem. Commun., 2017, 53,
4842.
3
4
K. C. Wasalathilake, G. Ayoko, C. Yan, in Recent Advances in Graphene Research,
P. K. Nayak, Ed. InTech Open, London, 2016, chapter 9, 195–213.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx