Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
mental biosynthetic routes, based either on chair-boat-chair
(C-B-C) or chair-chair-chair (C-C-C) prefolded sub-
strate conformation.2-8 In addition, cyclase-catalyzed reac-
tions can proceed in either an accurate or multifunctional
fashion to achieve catalytic perfection or to generate diverse
product profiles.3,5 The isolated product profiles reveal
the catalytic function of the given amino acids and support
the idea that subtle changes in individual residues can have
electronic effects and/or can sterically alter the active site
cavity structure to generate diverse product profiles. How-
ever, the functional residues involved in determining sub-
strate specificity for squalene/oxidosqualene, C-B-C/
C-C-C substrate conformation, and 17R/17ꢀ stereochemical
control of exocyclic side chain, remain unsolved.
To explore whether a single-site mutation in enzymes
possessing the cyclase structure is sufficient to alter substrate
conformation and protosteryl 17R/17ꢀ stereochemistry,
amino acids spatially near the substrate B/C/D ring positions
were targeted. We have previously characterized a functional
role of Saccharomyces cereVisiae ERG7F699T mutation in
influencing protosteryl C-17 cation stabilization.3h A more
complex interaction between Phe699 and prefolded substrate
conformation or cationic intermediates is expected and
provokes further investigation into the effects of substitution
of other amino acids on the catalytic activity and capacity
to traverse mechanistic barriers between C-B-C and
C-C-C substrate conformation and between 17R and 17ꢀ
stereochemistry of tetracyclic intermediates.
The Phe699 position of ERG7 was exchanged with other
amino acids using the QuikChange Site-Directed Mutagen-
esis Kit and transformed into the S. cereVisiae TKW14 and
YTL4 strains, as previously described.3h The genetic selec-
tion results showed that TKW14[pERG7F699X] site-saturated
mutants allowed for ergosterol-independent growth, with the
exception of Leu, Ile, His, Met, Pro, and the previously
reported Thr substitutions. Next, the product profiles gener-
ated by the ERG7 mutant enzymes were analyzed, using the
YTL4[pERG7F699X] strain, and characterized by GC-MS and
NMR (1H, 13C NMR, DEPT, 1H-1H COSY, HMQC,
HMBC, and NOE) spectroscopies.3f
Different ERG7F699X mutants produced diverse product
profiles, ranging from none to as many as seven compounds
with molecular mass of 426 Da. Among them, four com-
pounds were indistinguishable from authentic lanosterol (2,
LA), protosta-13(17)-dien-3ꢀ-ol (3), (13RH)-isomalabarica-
14E,17E,21-dien-3ꢀ-ol (7), and (13RH)-isomalabarica-
(3) (a) Wu, T. K.; Chang, C. H.; Liu, Y. T.; Wang, T. T. Chem. Rec.
2008, 8, 302–325. (b) Wu, T. K.; Griffin, J. H. Biochemistry 2002, 41,
8238–8244. (c) Wu, T. K.; Chang, C. H. ChemBioChem 2004, 5, 1712–
1715. (d) Wu, T. K.; Liu, Y. T.; Chang, C. H. ChemBioChem 2005, 6,
1177–1181. (e) Wu, T. K.; Yu, M. T.; Liu, Y. T.; Chang, C. H.; Wang,
H. J.; Diau, E. W. G. Org. Lett. 2006, 8, 1319–1322. (f) Wu, T. K.; Liu,
Y. T.; Chang, C. H.; Yu, M. T.; Wang, H. J. J. Am. Chem. Soc. 2006, 128,
6414–6419. (g) Wu, T. K.; Liu, Y. T.; Chiu, F. H.; Chang, C. H. Org. Lett.
2006, 8, 4691–4694. (h) Wu, T. K.; Wen, H. Y.; Chang, C. H.; Liu, Y. T.
Org. Lett. 2008, 10, 2529–2532. (i) Wu, T. K.; Wang, T. T.; Chang, C. H.;
Liu, Y. T. Org. Lett. 2008, 10, 4959–4962. (j) Wu, T. K.; Li, W.-H.; Chang,
C.-H.; Wen, H.-Y.; Liu, Y.-T.; Chang, Y.-C. Eur. J. Org. Chem. 2009,
1
14Z,17E,21-dien-3ꢀ-ol (8) standards by H and 13C NMR,
as well as GC-MS.3j The first novel new compound,
independently isolated from ERG7F699N and ERG7F699M
mutants, was characterized with NMR and confirmed as
malabarica-14E,17E,21-trien-3ꢀ-ol (4), a 6-6-5 tricyclic
product with chair-chair conformation and ∆14,17,21 double
bonds (see Supporting Information). This work describes the
first truncated intermediate of the oxidosqualene cyclases-
catalyzed cyclization/rearrangement cascade that alters the
substrate conformation from a ring-B boat conformation to
a ring-B chair conformation. The second novel compound
identified from ERG7F699M/N mutants was characterized as
17R-protosta-20,24-dien-3ꢀ-ol (5), a product with ∆20,24
double bonds and a C-17R hydrocarbon side chain config-
uration. Interestingly, this is the first reported product derived
from the protosteryl cation containing a C-17R-side chain
conformation, abrogating its further rearrangement reaction,
in ERG7 mutants. The third acetylated compound was
characterized as protosta-17(20),24-dien-3ꢀ-acetate. This
acetylated derivative was then hydrolyzed to yield its native
nonsaponifiable lipid, (17Z)-protosta-17(20),24-dien-3ꢀ-ol
(6). Recently, Lodeiro et al. also reported the characterization
of compound 3 and 6 from the oxidosqualene cyclases of
Aspergillus fumigates.5t
5731–5737
.
(4) (a) Abe, I.; Sankawa, U.; Ebizuka, Y. Chem. Pharm. Bull. 1989,
37, 536–538. (b) Kelly, R.; Miller, S. M.; Lai, M. H.; Kirsch, D. R. Gene
1990, 87, 177–183. (c) Buntel, C. J.; Griffin, J. H. J. Am. Chem. Soc. 1992,
114, 9711–9713. (d) Shi, Z.; Buntel, C. J.; Griffin, J. H. Proc. Natl. Acad.
Sci. U.S.A. 1994, 91, 7370–7374
.
(5) (a) Corey, E. J.; Matsuda, S. P.; Bartel, B. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 11628–11632. (b) Corey, E. J.; Matsuda, S. P. T.; Bartel,
B. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 2211–2215. (c) Baker, C. H.;
Matsuda, S. P. T.; Liu, D. R.; Corey, E. J. Biochem. Biophys. Res. Commun.
1995, 213, 154–160. (d) Herrera, J. B.; Bartel, B.; Wilson, W. K.; Matsuda,
S. P. Phytochemistry 1998, 49, 1905–1911. (e) Segura, M. J.; Meyer, M. M.;
Matsuda, S. P. Org. Lett. 2000, 2, 2257–2259. (f) Corey, E. J.; Virgil, S. C.
J. Am. Chem. Soc. 1991, 113, 4025–4026. (g) Corey, E. J.; Virgil, S. C.;
Cheng, H.; Baker, C. H.; Matsuda, S. P. T.; Singh, V.; Sarshar, S. J. Am.
Chem. Soc. 1995, 117, 11819–11820. (h) Corey, E. J.; Cheng, H.; Baker,
C. H.; Matsuda, S. P. T.; Li, D.; Song, X. J. Am. Chem. Soc. 1997, 119,
1289–1296. (i) Hart, E. A.; Hua, L.; Darr, L. B.; Wilson, W. K.; Pang, J.;
Matsuda, S. P. T. J. Am. Chem. Soc. 1999, 121, 9887–9888. (j) Joubert,
B. M.; Hua, L.; Matsuda, S. P. T. Org. Lett. 2000, 2, 339–341. (k) Meyer,
M. M.; Segura, M. J. R.; Wilson, W. K.; Matsuda, S. P. T. Angew. Chem.,
Int. Ed. 2000, 39, 4090–4092. (l) Lodeiro, S.; Segura, M. J.; Stahl, M.;
Schulz-Gasch, T.; Matsuda, S. P. T. ChemBioChem 2004, 5, 1581–1585.
(m) Phillips, D. R.; Rasbery, J. M.; Bartel, B.; Matsuda, S. P. Curr. Opin.
Plant Biol. 2006, 9, 305–314. (n) Herrera, J. B.; Wilson, W. K.; Matsuda,
S. P. T. J. Am. Chem. Soc. 2000, 122, 6765–6766. (o) Xiong, Q.; Wilson,
W. K.; Matsuda, S. P. Angew. Chem., Int. Ed. 2006, 45, 1285–1288. (p)
Lodeiro, S.; Xiong, Q.; Wilson, W. K.; Kolesnikova, M. D.; Onak, C. S.;
Matsuda, S. P. J. Am. Chem. Soc. 2007, 129, 11213–11222. (q) Corey,
E. J.; Ortiz de Montellano, P. R.; Yamamoto, H. J. Am. Chem. Soc. 1968,
90, 6245–6255. (r) Corey, E. J.; Lin, K.; Yamamoto, H. J. Am. Chem. Soc.
1969, 91, 2132–2134. (s) Corey, E. J.; Virgil, S. C.; Sarshar, S. J. Am.
Chem. Soc. 1991, 113, 8171–8172. (t) Lodeiro, S.; Xiong, Q.; Wilson,
W. K.; Ivanova, Y.; Smith, M. L.; May, G. S.; Matsuda, S. P. Org. Lett.
Table 1 shows the product profiles produced from the
ERG7F699X site-saturated mutants. No product was observed
for the nonviable mutants, except for the ERG7F699N mutant,
indicating the abolished cyclization function of these mutated
ERG7 cyclases. The ERG7F699N mutant required exogenous
ergosterol to maintain its viability and produced 3, 4, 5, and 6
in the ratio of 55:5:24:16 without any compound 2. In the case
of the viable mutants, the ERG7F699L, ERG7F699I, and ERG7F699P
mutants produced 2 as their sole product, whereas the
2009, 11, 1241–1244
.
(6) (a) Connolly, J. D.; Hill, R. A. Nat. Prod. Rep. 2002, 19, 494–513.
(b) Kushiro, T.; Shibuya, M.; Ebizuka, Y. Eur. J. Biochem. 1998, 256, 238–
244. (c) Husselstein-Muller, T.; Schaller, H.; Benveniste, P. Plant Mol. Biol.
2001, 45, 75–92. (d) Schulz-Gasch, T.; Stahl, M. J. Comput. Chem. 2003,
24, 741–753
.
Org. Lett., Vol. 12, No. 3, 2010
501