Journal of the American Chemical Society
Page 4 of 5
with unfunctionalized allyl (heteroꢀ) arenes enabled by the comꢀ
bination of photoredox and chromium catalysis. Mechanistic
investigations support the involvement of a chromium allyl speꢀ
cies that reacts via a sixꢀmembered transition state with the aldeꢀ
hyde. A variety of readily available allyl arenes were reactive,
including indoles, carbazoles and electronꢀrich allyl benzenes.
Additionally, the substrate scope was extended for the αꢀC(sp3)–
H functionalization of βꢀalkyl stryrenes and allylꢀdiarylamines.
Aliphatic and aromatic aldehydes are both equally reactive and
selective and can be functionalized in the presence of ketones and
esters. To the best of our knowledge, this work represents the first
example of dual photoredox and chromium catalysis. Overall, we
expect this approach to be widely employed in selective aldehyde
functionalizations.
(4) (a) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem.
Soc. 1977, 99, 3179. (b) Namba, K.; Wang, J.; Cui, S.; Kishi, Y. Org. Lett.
005, 7, 5421.
5) For selected reviews, see: (a) Fürstner, A. Chem. Rev. 1999, 99,
991. (b) Gil, A.; Albericio, F.; Álvarez, M. Chem. Rev. 2017, 117, 8420.
(c) Tian, Q.; Zhang, G. Synthesis 2016, 48, 4038. (d) Hargaden, G. C.;
Guiry, P. J. Adv. Synth. Catal. 2007, 349, 2407. (e) Hargaden, G. C.;
Guiry, P. J. In Stereoselective Synthesis of Drugs and Natural Products;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013, 347–368.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
2
(
(6) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349.
(7) For selected examples, see: (a) Bandini, M.; Cozzi, P. G.; Melꢀ
chiorre, P.; UmaniꢀRonchi, A. Angew. Chem. Int. Ed. 1999, 38, 3357. (b)
Berkessel, A.; Menche, D.; Sklorz, C. A.; Schröder, M.; Paterson, I.
Angew. Chem. Int. Ed. 2003, 42, 1032. (c) Inoue, M.; Suzuki, T.; Nakada,
M. J. Am. Chem. Soc. 2003, 125, 1140. (d) Wan, Z.ꢀK.; Choi, H.ꢀw.;
Kang, F.ꢀA.; Nakajima, K.; Demeke, D.; Kishi, Y. Org. Lett. 2002, 4,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
4
431. (e) Xiong, Y.; Zhang, G.; J. Am. Chem. Soc. 2018, 140, 2735. (f)
Xiong, Y.; Zhang, G. Org. Lett. 2016, 18, 5094.
8) For selected examples and reviews of C–H functionalization via
ASSOCIATED CONTENT
Supporting Information
(
photoredox catalysis, see: (a) Wang, C.ꢀS.; Dixneuf, P. H.; Soulé, J.ꢀF.
Chem. Rev. 2018, 118, 7532. (b) Nakajima, K.; Miyake, Y.; Nishibayashi,
Y. Acc. Chem. Res. 2016, 49, 1946. (c) Fabry, D. C.; Rueping, M. Acc.
Chem. Res. 2016, 49, 1969. (d) Huang, L; Rueping, M. Angew. Chem. Int.
Ed. 2018, 57, 10333. (e) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.;
Rivera, N. R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Science
The Supporting Information is available free of charge on the
ACS Publications website.
Experimental and computational details (PDF)
Crystallographic Data for 6ca (CIF)
2
017, 358, 1182. (f) Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan,
AUTHOR INFORMATION
Corresponding Author
D. W. C. Nature 2017, 547, 79. (g) Shaw, M. H.; Shurtleff, V. W.; Terrett,
J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, 352, 1304.
(h) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C.; Science 2015, 349,
1
532. (i) Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A.;
*glorius@uniꢀmuenster.de
Science 2015, 349, 1326. (j) McManus, J. B.; Nicewicz, D. A. J. Am.
Chem. Soc. 2017, 139, 2880. (k) Margrey, K. A.; Levens, A.; Nicewicz,
D. A.; Angew. Chem. Int. Ed. 2017, 56, 15644. (l) McManus, J. B.;
Onuska, N. P. R.; Nicewicz, D. A. J. Am. Chem. Soc. 2018, 140, 9056.
(m) Margrey, K. A.; Czaplyski, W. L.; Nicewicz, D. A.; Alexanian, E. J.
J. Am. Chem. Soc. 2018, 140, 4213. (n) Mukherjee, S.; Maji, B.; Tlahuextꢀ
Aca, A.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 16200.
Author Contributions
‡These authors contributed equally.
Notes
The authors declare no competing financial interests.
(9) For selected examples of intermolecular radical addition to forꢀ
maldehyde, see: (a) Humphreys, R. W. R. J. Org. Chem. 1983, 48, 1483.
(b) Sanderson, J. R.; Yeakey, E. L.; Lin, J. J.; Duranleau, R.; Marquis, E.
T. J. Org. Chem. 1987, 52, 3243. (c) Sanderson, J. R.; Lin, J. J.; Duranꢀ
leau, R. G.; Yeakey, E. L.; Marquis, E. T. J. Org. Chem. 1988, 53, 2859.
ACKNOWLEDGMENT
th
Dedicated to Prof. Holger Butenschön on the occasion of his 65
birthday. Generous thank to the Alfried Krupp von Bohlen and
Halbach Foundation (J.L.S.) and the Deutsche Forschungsgeꢀ
meinschaft (Leibniz Award) for financial support. We thank Max
Lübbesmeyer and Andre Kemna for experimental support, Mario
Wiesenfeldt, Dr. Michael James, Santanu Singha and Satobhisha
Mukherjee for helpful discussion, and Dr. Constantin G. Daniliuc
and Birgit Wibbeling (all WWU Münster) for the Xꢀray crystalloꢀ
graphic analysis.
(
d) Oyama, M. J. Org. Chem. 1965, 30, 2429. (f) Kawamoto, T.; Fukuyaꢀ
ma, T.; Ryu, I. J. Am. Chem. Soc. 2012, 134, 875.
10) For examples of intermolecular radical addition to carbonyls, see:
a) Pitzer, L.; Sandfort, F.; StriethꢀKalthoff, F.; Glorius, F. J. Am. Chem.
Soc. 2017, 139, 13652. (b) Clerici, A.; Porta, O.; Zago, P. Tetrahedron
(
(
1
986, 42, 561. (c) Clerici, A.; Porta, O. J. Org. Chem. 1989, 54, 3872.
(11) (a) Wilsey, S.; Dowd, P.; Houk, K. N. J. Org. Chem. 1999, 64,
8801. (b) Curran, D. P.; Diederichsen, U.; Palovich, M. J. Am. Chem. Soc.
997, 119, 4797. (c) Salamone, M.; Bietti, M. Synlett 2014, 25, 1803. (d)
1
Hartung, J.; Gottwald, T.; Špehar, K. Synthesis 2002, 1469.
REFERENCES
(12) For selected examples for radical coupling of alkyl radicals and
ketyl radicals, see: (a) Fava, E.; Millet, A.; Nakajima, M.; Loescher, S.;
Rueping, M. Angew. Chem. Int. Ed. 2016, 55, 6776. (b) Petronijevic, F.
R.; Nappi, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2013, 135, 18323.
(c) Xia, Q.; Tian, H.; Dong, J.; Qu, Y.; Li; L; Song, H.; Liu, Y.; Wang, Q.
Chem. Eur. J. 2018, 24, 9269.
(13) Additionally, aldehydes can also be employed as acyl radical preꢀ
cursors in photoredox catalysis via hydrogen atom transfer. For selected
examples, see: (a) Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc.
2017, 139, 11353. (b) Mukherjee, S.; GarzaꢀSanchez, R. A.; Tlahuextꢀ
Aca, A.; Glorius, F. Angew. Chem. Int. Ed. 2017, 56, 14732. (c) Mukherꢀ
jee, S.; Patra, T.; Glorius, F.; ACS Catal. 2018, 8, 5842.
(14) For selected reviews on the combination of photoredox and tranꢀ
sition metal catalysis, see: (a) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.;
Evans, M. H.; MacMillan, D. W. C., Nat. Rev. Chem. 2017, 1, Article
Number 0052. (b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev.
2016, 116, 10035. (c) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy,
M; Patel, Niki. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429. (d)
Tóth, B. L.; Tischler, O.; Novák, Z. Tetrahedron Lett. 2016, 57, 4505.
(15) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R.
A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
(16) (a) Hiyama, T.; Kimura, K.; Nozaki, H. Tetrahedron Lett. 1981,
22, 1037. (b) Wessjohann, L. A.; Scheid, G. Synthesis 1999, 1.
(1) For selected reviews on carbonyl allylation, see: (a) Yus, M.;
GonzálezꢀGómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595. (b) Kim,
S. W.; Zhang, W.; Krische, M. J. Acc. Chem. Res. 2017, 50, 2371. (c)
Wang, P.ꢀS.; Shen, M.ꢀL.; Gong, L.ꢀZ. Synthesis 2018, 50, 956. (d)
Spielmann, K.; Niel, G.; de Figueiredo, R. M.; Campagne, J.ꢀM. Chem.
Soc. Rev. 2018, 47, 1159. (e) Huo, H.ꢀX.; Duvall, J. R.; Huang, M.ꢀY.;
Hong, R. Org. Chem. Front. 2014, 1, 303. (f) Yamamoto, Y.; Asao, N.
Chem. Rev. 1993, 93, 2207.
(2) For selected syntheses of natural products containing a homoalꢀ
lylic alcohol moiety, see: (a) Kawamura, S.; Chu, H.; Felding, J.; Baran, P.
S. Nature 2016, 532, 90. (b) Reddy, L. R.; Saravanan, P.; Corey, E. J. J.
Am. Chem. Soc. 2004, 126, 6230. (c) Gao, X.; Hall, D. G. J. Am. Chem.
Soc. 2005, 127, 1628. (d) Kang, S. H.; Kang, S. Y.; Kim, C. M.; Choi, H.ꢀ
w.; Jun, H.ꢀS.; Lee, B. M.; Park, C. M.; Jeong, J. W. Angew. Chem. Int.
Ed. 2003, 42, 4779. (e) Wang, Y.; Ju, W.; Tian, H.; Tian, W.; Gui, J., J.
Am. Chem. Soc. 2018, 140, 9413.
(3) For selected recent natural product syntheses utilizing the forꢀ
mation of homoallylic alcohol intermediates, see: (a) Lu, Z.; Zhang, X.;
Guo, Z.; Chen, Y.; Mu, T.; Li, A. J. Am. Chem. Soc. 2018, 140, 9211. (b)
Schmid, M.; Grossmann, A. S.; Wurst, K.; Magauer, T. J. Am. Soc. Chem.
2018, 140, 8444. (c) Nicolaou, K. C.; Rhoades, D.; Kumar, S. M. J. Am.
Chem. Soc. 2018, 140, 8303.
4
ACS Paragon Plus Environment