1
4
study of bromination and debromination processes of ali-
phatic ketones, we also have discovered the selective
bromination of unsymmetrical ketones on singly activated
carbon against doubly activated carbon, which will provide
a new general synthetic route for the preparation of bromi-
nated unsymmetrical ketones in a less activated position
telluroates, thiols,15 selenols,16 amines,17 and anionic iron
1
8
19
complex; (iii) heterogeneous hydrogenation; and (iv)
20
homogeneous Pd-catalyzed hydrogenation. However, to our
knowledge, there has been no report on hydrobromic acid
as a reducing agent of R-bromoketones.
During our research on the possibility of hydrobromic acid
as a reducing agent, we found that the addition of hydro-
bromic acid causes reversible isomerization such as those
(Scheme 1). Unsymmetrical ketones such as phenylacetone
2
published reports and discovered that HBr causes irreversible
debromination when added with a scavenger of bromine (first
Scheme 1. New Synthetic Strategy for the Selective
Preparation of Terminal Bromoketones
discoVery). We also found that the doubly activated internal
21
position is more rapidly brominated and debrominated than
the singly activated terminal position (second discoVery).
In the case of bromination at the more activated R-position
of unsymmetrical ketones, the required R-bromoketones can
be obtained by direct bromination. However, there is a
synthetic difficulty in the preparation of R-bromoketones
brominated at the less activated R-position. There are some
reports on synthetic methods of unsymmetrically brominated
(
5) and 1-phenyl-1,3-butanedione (6) have a methylene group
and a methyl group. In this report, the methylene carbon is
in an internal position that is doubly activated by two
electron-withdrawing groups (EWG): phenyl and carbonyl
or two carbonyls. In addition, the methyl carbon is in a
terminal position singly activated by only one carbonyl.
2
2
R-ketones: bromination of epoxides, oxidation of olefins
2
3
24
by sodium bromite, bromodecarboxylations, and bromo-
2
5
deacylations; however, all of them have synthetic limits
as general applications for the preparation of unsymmetrical
R-bromoketones.
Table 2. Kinetic Bromination (Short Reaction Time)a
product (%)b
time
entry reactant (min) reactant internal terminal other
1
2
3
4
5a
6a
7a
8a
10
1
1
5a (3)
6a (6)
7a (8)
8a (0)
5b (87)
6b (80)
7b (75)
8b (100)
5c (1)
6c (5)
7c (7)
8c (0)
5e (9)
6e (9)
7d (6)
10
a
Reaction conditions: Br2 (1.0 equiv) was added, and acetic acid was
used as a solvent. b NMR integral ratio yield.
Figure 2. Compound list.
In this report, we have tried to discover a new synthetic
method for the preparation of R-bromoketones that are
brominated at the less activated terminal position of unsym-
Many reagents for reduction of R-bromoketones have been
3
developed: (i) reducing agents, e.g., zinc in acetic acid,
4
5
6
alkyltinhydride, vanadium(II) chloride, silicon hydride,
(
7) Goto, T.; Kishi, Y. Tetrahedron Lett. 1961, 513-515.
7
8
9
borohydride, stannous chloride, titanium(III) salts, sodium
(
8) Oriyama, T.; Mukaiyama, T. Chem. Lett. 1984, 2069-2070.
10
11
bisulfite, and benzimidazolines; (ii) nucleophilic reducing
(9) Clerici, A.; Porta, O. Tetrahedron Lett. 1987, 28, 1541-1544.
(10) Julian, P. L.; Karpel, W. J. J. Am. Chem. Soc. 1950, 72, 362-366.
12
13
agents, e.g., NaI/chlorotrimethylsilane, organophosphine,
(11) Chikashita, H.; Ide, H.; Itoh, K. J. Org. Chem. 1986, 51, 5400-
5
405.
(
2) Mehta, M. D.; Miller, D.; Tidy, D. J. D. J. Chem. Soc. 1963, 4614-
(12) Olah, G. A.; Arvanaghi, M.; Vankar, Y. D. J. Org. Chem. 1980,
4
616. Jones, E. R. H.; Wluka, D. J. J. Chem. Soc. 1959, 907-910. Mauli,
45, 3531-3532.
R.; Ringold, H. J.; Djerassi, C. J. Am. Chem. Soc. 1960, 82, 5494-5500.
(13) Borowitz, I. J.; Virkhaus, R. J. Am. Chem. Soc. 1963, 85, 2183-
2184.
Djerassi, C.; Finch, N.; Cookson, R. C.; Bird, C. W. J. Am. Chem. Soc.
1
960, 82, 5488-5493. Corey, E. J. J. Am. Chem. Soc. 1954, 76, 175-179.
(14) Clive, D. L. J.; Beaulieu, P. L. J. Org. Chem. 1982, 47, 1124-
Villotti, R.; Ringold, H. J.; Djerassi, C. J. Am. Chem. Soc. 1960, 82, 5693-
1126.
5
700. Corey, E. J. J. Am. Chem. Soc. 1953, 75, 4832-4834. Corey, E. J.
(15) Inoue, H.; Hata, H.; Imoto, E. Chem. Lett. 1975, 1241-1244.
(16) Seshadri, R.; Pegg, W. J.; Israel, M. J. Org. Chem. 1981, 46, 2596-
2598.
J. Am. Chem. Soc. 1953, 75, 3297-3299. Davies, A. R.; Summers, G. H.
R. J. Chem. Soc. 1967, 1227-1232.
(3) Corey, E. J.; Gregoriou, G. A. J. Am. Chem. Soc. 1959, 81, 3127-
(17) Ho, T.-L.; Wong, C. M. J. Org. Chem. 1974, 39, 562.
(18) Alper, H. Tetrahedron Lett. 1975, 2257-2260.
(19) Sargent, L. J.; Ager, J. H. J. Org. Chem. 1958, 23, 1938-1940.
(20) Pri-Bar, I.; Buchman, O. J. Org. Chem. 1985, 51, 734-736.
(21) Babadjamian, A.; Kessat, A. Synth. Commun. 1995, 25, 2203-2209.
Wyman, D. P.; Kaufman, P. R. J. Org. Chem. 1964, 29, 1956-1960.
Wyman, D. P.; Kaufman, P. R.; Freeman, W. R. J. Org. Chem. 1964, 29,
2706-2710. Rappe, C.; Sachs, W. H. J. Org. Chem. 1967, 32, 3700-3702.
3133. Zimmerman, H. E.; Mais, A. J. Am. Chem. Soc. 1959, 81, 3644-
3651.
(4) Kuivila, H. G.; Menapace, L. W. J. Org. Chem. 1963, 28, 2165-
2
167. Tanner, D. D.; Singh, H. K. J. Org. Chem. 1986, 51, 5182-5186.
(
5) Ho, T.-L.; Olah, G. A. Synthesis 1976, 807.
(6) Perez, D.; Greenspoon, N.; Keinan, E. J. Org. Chem. 1987, 52, 5570-
5
574.
12
4
Org. Lett., Vol. 5, No. 4, 2003