´
M.A Farr a´ n et al. / Journal of Molecular Structure 741 (2005) 67–75
75
crystallised from hexane to give 2 (35 mg, 90% yield) as a
pale yellow solid. m.p.Z125.4 8C, Lit. [5b] 124 8C. MS m/z
12 union Road, Cambridge CB2 1EZ, UK; fax: (C44)
1223-336033; or deposit@ccdc.cam.uk.
C
relative intensity): 137 (M , 40), 28 (100). Anal. Calcd. for
(
C H N O, C 52.55, H 5.14, N 30.64; found C 52.62, H 5.16,
6
7 3
1
3
N 30.83. H NMR (CDCl ): 8.17 (d, H , JZ2.2), 7.94 (d,
3
5
1
H-6), 5.73 (bs, NH ), 2.68 (s, CH CO). C NMR (CDCl ):
3
Acknowledgements
2
3
2
3
3
1
2
02.7 (CO, JZ6.0), 154.6 (C-3, JZ9.2), 147.3 (C-5, JZ
68.7, JZ12.2), 132.8 (C-6, JZ180.4, JZ10.7), 130.4
C-2), 25.8 (CH , JZ128.5).
3
2
1
2
1
This work has been financed by the MCyT/DGI of Spain
(BQU2003-00976) and UNED (2003I/PUNED/21). One of
us (M.A.F.) thanks the MCyT for a ‘Ramon y Cajal’
fellowship.
1
(
4
.4.8. 2-Benzoyl-3-aminopyrazine (3)
Hundred-and-ten milligrams (0.4 mmol) of 7b were
suspended in 5 mL of methanol with 80 mL of 12 M
NaOH solution (0.8 mmol) and refluxed for 3 h. Then, 5 mL
of water were added to the solution, a bright yellow
precipitate formed that was filtered, dried and crystallised
from ethanol to give 3 (65 mg, 85% yield) as bright yellow
crystals, m.p. 161.3 8C, Lit [5b] 160 8C MS m/z (relative
References
[
[
1] T.B. Adams, J. Doull, V.J. Feron, J.I. Goodman, L.J. Marnett,
I.C. Munro, P.M. Newberne, P.S. Portoghese, R.L. Smith,
W.J. Waddell, B.M. Wagner, Food Chem. Toxicol. 40 (2002) 429.
2] M.L. Dubuissona, J.F. Reesa, J. Marchand-Brynaert, Mini Rev. Med.
Chem. 4 (2004) 421.
C
intensity): 198 (M-1 , 60), 105 (100). Anal. Calcd. for
C H N O, C 66.32, H 4.55, N 21.09; found C 66.57, H
1
1 9 3
1
3
4
.66, N 21.11. H NMR (CDCl ): 8.19 (d, H-5, JZ2.2),
.99 (d, H-6, JZ2.2), 7.94 (d, ArH-2 6 , JZ8.0), 7.54 (t,
ArH-4 , JZ JZ7.0), 7.45 (t, ArH-3 5 , JZ JZ7.0),
.91(bs, NH ). C NMR (CDCl ): 196.0 (CO), 156.6 (C-3
2 3
[3] H. Dugas, Bioorganic Chemistry: A Chemical Approach to Enzyme
Action, third ed., Springer, New York, 1996.
3
3
0
0
0
3
7
0
3
3
0
3
3
[4] T. Okawa, S. Eguchi, Tetrahedron 54 (1998) 5853.
[
5] (a) W.J. Irwin, D.G. Wibberley, Tetrahedron Lett. 32 (1972) 3359;
b) A. Turck, L. Mojovic, G. Qu e´ guiner, Synthesis 1998; 881.
1
3
6
2
(
1
2
0
JZ10.7), 147.6 (C-5, JZ173.3, JZ10.7), 138.4 (C-1 ,
JZ6.9), 133.3 (C-6, JZ179.4, JZ7.6), 132.1 (C-4 , JZ
61.0, JZ7.5), 131.0 (C-2, JZ10.7), 130.6 (C-3 5 , JZ
61.0, JZ7.5), 128.4 (C-2 6 , JZ160.0, JZ7.5).
.5. X-Ray data collection and structure refinement
Suitable crystal of 3 for X-ray diffraction experiments
[
6] A. Wolski, S. Magielka, (Starogardzkie Zaklady Farmceutyczne
‘Polfa’, Pol). Polish Patent. CODEN: POXXA7 PL 159729 B1
2
1
2
0
1
2
3
0 0
1
1
9930129, 1993.
1
2
0
0
1
2
[7] M. Okabe, R.-C. Sun, Tetrahedron 51 (1995) 1861.
1
[
8] S. Tobias, H. G u¨ nther, Tetrahedron Lett. 23 (1982) 4785.
9] H. Sommer, H.J. Bertram, G.E. Krammer, C.O. Schmidt, W. Stumpe,
P. Werkhoff, M. Zviely, Magn. Reson. Chem. 38 (2000) 907.
[
4
[
[
[
10] R.H. Cox, A.A. Bothner-By, J. Phys. Chem. 72 (1968) 1642.
11] R.H. Cox, A.A. Bothner-By, J. Phys. Chem. 72 (1968) 1646.
12] O.N. Chupakhin, V.N. Charushin, A.I. Chernishev, Prog. Nucl. Magn.
Reson. Spectrosc. 20 (1988) 95.
was obtained by crystallisation from ethanol. Data collec-
tion was carried out at room temperature on a Bruker Smart
CCD diffractometer using graphite-monochromated Mo Ka
[
[
13] G.S. Marx, P.E. Spoerri, J. Org. Chem. 37 (1972) 111.
14] (a) J. Elguero, C. Marzin, A.R. Katritzky, P. Linda, The Tautomerism
of Heterocycles, Academic Press, New York, 1976.p. 143;
˚
radiation (lZ0.71073 A) operating at 50 kV and 30 mA.
(
b) J. Elguero, C. Marzin, A.R. Katritzky, P. Linda, The Tautomerism
of Heterocycles, Academic Press, New York, 1976.p. 142;
c) J. Elguero, C. Marzin, A.R. Katritzky, P. Linda, The Tautomerism
of Heterocycles, Academic Press, New York, 1976.p. 163.
Data were collected over a hemisphere of the reciprocal
space by combination of three exposure sets. Each exposure
of 30 s covered 0.3 in u. Reflection ranges for the data
collection were 1.82!q! 24.998. Structure was solved by
direct methods (SHELXS-97) and refined by full-matrix least-
(
[
[
[
15] W. Pfleiderer, In Comprehensive Heterocyclic Chemistry, 3, Perga-
mon Press, Oxford, 1984. p. 264.
2
16] S. Braun, H.-O. Kalinowski, S. Berger, 150 and More Basic NMR
Experiments, Wiley-VCH, Weinheim, 1998.
square procedures on F for all reflections (SHELXL-97) [21].
All non-hydrogen atoms were refined anisotropically. All
hydrogen atoms were located on a difference Fourier map
and fixed, save the hydrogens bonded to nitrogen atom (N7)
where only coordinates were refined. Crystal data and other
structure determination details are presented in Table 6.
CCDC-257606 contains the supplementary crystallo-
17] (a) A.D. Becke, J. Chem. Phys. 98 (1993) 5648;
(
(
b) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785;
c) A.D. Becke, Phys. Rev. A 38 (1988) 3098;
(d) B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157
1989) 200.
(
[
[
[
[
18] P.A. Hariharan, J.A. Pople, Theor. Chim. Acta 28 (1973) 213.
19] Spartan ’02 for Windows from Wavefunction Inc.
20] H. Wamhoff, E. Kroth, Synthesis 1994; 405.
21] G.M. Sheldrick, Program for Refinement of Crystal Structure,
University of Gottingen, 1997.
(
or from the cambridge Crystallographic Data centre,