B. Karami et al./Chemical Papers 66 (7) 684–690 (2012)
689
the synthesis of benzimidazoles IV and recyclability
of TSA was proposed. TSA acts as a Brønsted acid
so that it can release a proton and activate the or-
thoester; thus, the energy of the transition state de-
creases and the rate of the nucleophilic displacement
increases. In general, TSA has valuable and special
features including: a) reaction carried out under sol-
vent free conditions; b) high thermal stability; c) small
amount of catalyst used making this reaction eco-
nomic and eco-friendly.
site strain NF54. Tetrahedron Letters, 42, 751–754. DOI:
0.1016/s0040-4039(00)02106-7.
Karami, B., Damavandi, A. J., Bayat, M., & Montazerzohori,
M. (2006a). A new role of N-arylbenzoquinoneimine N-oxides
in the von Richter reaction. Journal of the Serbian Chemical
Society, 71, 27–30. DOI: 10.2298/jsc0601027k.
Karami, B., & Khodabakhshi, S. (2011). A facile synthesis of
phenazine and quinoxaline (new 1,4-benzo diazine) deriva-
tives using magnesium sulfate heptahydrate as a catalyst.
Journal of the Serbian Chemical Society, 76, 1191–1198.
DOI: 10.2298/jsc100801104k.
Karami, B., Montazerozohori, M., & Habibi, M. H. (2005).
Tungstate sulfuric acid (TSA)/NaNO2 as a novel heteroge-
neous system for the N-nitrosation of secondary amines under
mild conditions. Bulletin of the Korean Chemical Society, 26,
1
Conclusions
1
125–1128. DOI: 10.5012/bkcs.2005.26.7.1125.
In summary, a useful application of tungstate sul-
furic acid as a powerful solid acid catalyst in the con-
densation of orthoesters with o-phenylenediamines un-
der solvent-free conditions was presented. Simple ex-
perimental procedure, utilization of a clean and re-
cyclable catalyst, the use of ready available starting
materials, short period of reaction and good to excel-
lent yields make this method a valid contribution to
the existing methodologies. In fact, this method may
contribute to the development of green chemistry be-
cause it proceeds under solvent-free conditions. Also,
the presence of transformable functionalities of the
novel products makes them potentially valuable from
the aspect of further synthetic manipulations.
Karami, B., Montazerozohori, M., & Habibi, M. H. (2006b).
Tungstate sulfuric acid: A novel and efficient solid acidic
reagent for the oxidation of thiols to disulfides and the
oxidative demasking of 1,3-dithianes. Phosphorous, Sulfur,
and Silicon and the Related Elements, 181, 2825–2831. DOI:
10.1080/10426500600864965.
Ku ¸s , C., & Altanlar, N. (2003). Synthesis of some new benz-
imidazole carbamate derivatives for evaluation of antifungal
activity. Turkish Journal of Chemistry, 27, 35–40.
Maiti, D. K., Halder, S., Pandit, P., Chatterjee, N., De Joarder,
D, Pramanik, N., Saima, Y., Patra, A., & Maiti, P. K.
(2009). Synthesis of glycal-based chiralbenzimidazoles by
VO(acac)2–CeCl3 combo catalyst and their self-aggregated
nanostructured materials. The Journal of Organic Chem-
istry, 74, 8086–8097. DOI: 10.1021/jo901458k.
Mallakpour, S. E., Karami-Descho, B., & Sheikholeslami, B.
(1998). Polymerization of 1-methyl-2,5-bis[1-(4-phenylurazo-
lyl)] pyrrole dianion with alkyldihalides. Polymer Interna-
tional, 45, 98–102. DOI: 10.1002/(SICI)1097-0126(199801)45:
Acknowledgements. The authors gratefully acknowledge
partial support of this work by the Yasouj University, Iran.
1
<98::AID-PI895>3.0.CO;2-3.
References
Martin, A., & Kalevaru, N. V. (2010). Heterogeneously cat-
alyzed ammoxidation: A valuable tool for one-step synthesis
of nitriles. ChemCatChem, 2, 1504–1522. DOI: 10.1002/cctc.
Barker, H. A., Smyth, R. D., Weissbach, H., Toohey, J. I., Ladd,
J. N., & Volcani, B. E. (1960). Isolation and properties of
crystalline cobamide coenzymes containing benzimidazole or
201000173.
Marziano, N. C., Ronchin, L., Tortato, C., Ronchin, S., & Vava-
sori, A. (2005). Selective oxidations by nitrosating agents:
Part 2: Oxidations of alcohols and ketones over solid acid
catalysts. Journal of Molecular Catalysis A: Chemical, 235,
5
,6-dimethylbenzimidazole. The Journal of Biological Chem-
istry, 235, 480–488.
Buchstaller, H. P., Burgdorf, L., Finsinger, D., Stieber, F., Sir-
renberg, C., Amendt, C., Grell, M., Zenke, F., & Krier, M.
2011). Design and synthesis of isoquinolines and benzim-
idazoles as RAF kinase inhibitors. Bioorganic & Medicinal
Chemistry Letters, 21, 2264–2269. DOI: 10.1016/j.bmcl.2011.
26–34. DOI: 10.1016/j.molcata.2005.03.008.
(
Migawa, M. T., Girardet, J. L., Walker, J. A., Koszalka,
G. W., Chamberlain, S. D., Drach, J. C., & Townsend,
L. B. (1998). Design, synthesis, and antiviral activity of
α-nucleosides: D- and L-isomers of lyxofuranosyl- and (5-
deoxylyxofuranosyl)benzimidazoles. Journal of Medicinal
Chemistry, 41, 1242–1251. DOI: 10.1021/jm970545c.
Mohammadpoor-Baltork, I., Khosropour, A. R., & Hojati, S.
F. (2007). ZrOCl2·8H2O as an efficient, environmentally
friendly and reusable catalyst for synthesis of benzoxazoles,
benzothiazoles, benzimidazoles and oxazolo[4,5-b]pyridines
under solvent-free conditions. Catalysis Communications, 8,
1865–1870. DOI: 10.1016/j.catcom.2007.02.020.
02.108.
Damavandi, J. A., Karami, B., & Zolfigol, M. A. (2002). Se-
lective oxidation of N-alkyl imines to oxaziridines using
UHP/maleic anhydride system. Synlett, 2002, 933–934. DOI:
0.1055/s-2002-31903.
Davoodnia, A., Allameh, S., Fazli, S., & Tavakoli-Hoseini, N.
2011). One-pot synthesis of 2-amino-3-cyano-4-arylsubstitu-
ted tetrahydrobenzo[b]pyrans catalysed by silica gel-suppor-
ted polyphosphoric acid (PPA–SiO2) as an efficient and
reusable catalyst. Chemical Papers, 65, 714–720. DOI:
1
(
Niknam, K.,
& Fatehi-Raviz, A. (2007). Synthesis of 2-
1
0.2478/s11696-011-0064-8.
substituted benzimidazoles and bis-benzimidazoles by mi-
crowave in the presence of alumina-methanesulfonic acid.
Journal of the Iranian Chemical Society, 4, 438–443.
Ogurtsov, V. A., Rakitin, O. A., Rees, C. W., & Smolentsev, A.
A. (2003). 4,5-Dichloro-1,2-dithiole-3-thione in the synthesis
of benzimidazole, benzoxazole and benzothiazole derivatives
of 1,3-dithioles. Mendeleev Communications, 13, 50–51. DOI:
10.1070/mc2003v013n02abeh001750.
Heydari, A., Larijani, H., Emami, J., & Karami, B. (2000).
Lithium perchlorate/diethylether-catalyzed three-compo-
nent coupling reactions of aldehydes, hydroxylamines and
trimethylsilyl cyanide leading to α-cyanohydroxylamines.
Tetrahedron Letters, 41, 2471–2473. DOI: 10.1016/s0040-
4039(00)00182-9.
Howarth, J., & Hanlon, K. (2001). Novel N-ferrocenylmethyl,
N -methyl-2-substituted benzimidazolium iodide salts with
in vitro activity against the P. falciparum malarial para-
ꢀ
Olah, G. A., Molhotra, R., & Narang, S. C. (1978). Aromatic
substitution. 43. Perfluorinated resinsulfonic acid catalyzed