reaction in water5 and in the R-aminoxylation of ketones and
aldehydes,6 while offering important operational advan-
tages.7
In this paper, we report on the preparation of new
immobilized organocatalysts (Figure 1) through Cu-catalyzed
In the context of our efforts toward the implementation
of copper-mediated 1,3-dipolar cycloadditions as a general
immobilization strategy for organocatalysis, we turned our
attention to the catalytic enantioselective Michael addition
of ketones to nitrostyrenes.8 This reaction is a powerful
synthetic tool that provides access to synthons of many
interesting types9 and has been studied from the perspective
of organocatalysis following two different approaches: (i)
the use of bifunctional catalysts that simultaneously activate
the ketone and nitroolefin partners10 and (ii) the use of simple
2-substituted cyclic amines (mostly pyrrolidines), where the
side chain is believed to act as a steric controller that directs
the reactivity toward the less hindered diastereotopic face
of the intermediate enamine.11 Within this category, systems
bearing highly nitrogen-rich substituents such as tetrazoles
and 1,2,3-triazoles have shown promising activity-selectivity
profiles in the asymmetric Michael reactions.11d,e,g,h
Figure 1. Structure of the supported catalysts.
1,3-dipolar cycloadditions between (S)-2-azidomethylpyrrol-
idine and alkynyl-functionalized Merrifield resins and on the
development of optimal conditions for the use of these resins
as highly efficient catalysts for the asymmetric Michael
addition.
The catalysts were prepared by a straightforward route as
shown in Scheme 1 and the Supporting Information. Azi-
Scheme 1. Functionalization of the PS Resin
However, in spite of the interest of the reaction, the first
efforts toward the development of recyclable catalysts have
only been published quite recently,12 and nothing has been
known until now on the use of insoluble, polymer-supported
organocatalysts in this process.
(3) (a) Vidal-Ferran, A.; Bampos, N.; Moyano, A.; Pericas, M. A.; Riera,
A.; Sanders, J. K. M. J. Org. Chem. 1998, 63, 6309. (b) Perica`s, M. A.;
Castellnou, D.; Rodr´ıguez, I.; Riera, A.; Sola`, Ll. AdV. Synth. Catal. 2003,
345, 1305. (c) Fraile, J. M.; Mayoral, J. A.; Serrano, J.; Perica`s, M. A.;
Sola`, Ll.; Castellnou, D. Org. Lett. 2003, 5, 4333. (d) Castellnou, D.; Sola`,
L.; Jimeno, C.; Fraile, J. M.; Mayoral, J. A.; Riera, A.; Perica`s, M. A. J.
Org. Chem. 2005, 70, 433. (e) Castellnou, D.; Fontes, M.; Jimeno, C.; Font,
D.; Sola`, L.; Verdaguer, X.; Perica`s, M. A. Tetrahedron 2005, 61, 12111.
(4) (a) Tornøe, C. W.; Meldal, M. In Proc. Second Intl. and SeVenteenth
Amer. Peptide Soc. Symp.; Lebl, M., Houghten, R. A., Eds.; American
Peptide Society and Kluwer Academic Press: San Diego, 2001; pp 263-
264. (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002,
67, 3057. (c) Rostovtsed, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K.
B. Angew. Chem., Int. Ed. 2002, 41, 2596. For a review on the concept of
click chemistry, see: (d) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2001, 40, 2004.
(5) Font, D.; Jimeno, C.; Perica`s, M. A. Org. Lett. 2006, 8, 4653.
(6) Font, D.; Bastero, A.; Sayalero, S.; Jimeno, C.; Perica`s, M. A. Org.
Lett. 2007, 9, 1943.
(7) For assessments on the suitability of click chemistry as a supporting
strategy in metal catalysis, see: (a) Gissibi, A.; Finn, M. G.; Reiser, O.
Org. Lett. 2005, 7, 2325-2328. (b) Bastero, A.; Font, D.; Perica`s, M. A. J.
Org. Chem. 2007, 72, 2460.
(8) For a review, see: Sulzer-Mosse´, S.; Alexakis, A. Chem. Commun.
2007, 3123.
(9) For a review, see: Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J.
Org. Chem. 2002, 1877.
(10) (a) Cao, C.; Ye, M.; Sun, X.; Tang, Y. Org. Lett. 2006, 8, 2901.
(b) Wei, S.; Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S. Catal. Today
2007, 121, 151. (c) Liu, K.; Cui, H.; Nie, J.; Dong, K.; Li, X.; Ma, J. Org.
Lett. 2007, 9, 923.
(11) (a) Andrey, O.; Alexakis, A.; Bernardinelli, G. AdV. Synth. Catal.
2004, 346, 1147. (b) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew.
Chem., Int. Ed. 2005, 44, 4212. (c) Mosse, S.; Laars, M.; Kriis, K.; Kanger,
T.; Alexakis, A. Org. Lett. 2006, 8, 2559. (d) Luo, S.; Xu, H.; Mi, X.; Li,
J.; Zheng, X.; Cheng, J. J. Org. Chem. 2006, 71, 9244. (e) Yan, Z.; Niu,
Y.; Wei, H.; Wu, L.; Zhao, Y.; Liang, Y. Tetrahedron: Asymmetry 2007,
17, 3288. (f) Vishnumaya; Singh, V. K. Org. Lett. 2007, 9, 1117. For
examples of pyrrolidine-type catalysts with protic groups: (g) Cobb, A. J.
A.; Longbottom, D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun. 2004,
16, 1808. (h) Mitchell, C. E. T.; Cobb, A. J. A.; Ley, S. V. Synlett 2005,
4, 611. (i) Prieto, A.; Halland, N.; Jorgensen, K. A. Org. Lett. 2005, 7,
3897. (j) Mase, N.; Watanabe, K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas,
C. F., III. J. Am. Chem. Soc. 2006, 128, 4966.
domethylpyrrolidine 5 was prepared from L-proline by
reduction with lithium aluminum hydride and subsequent
protection of the unstable aminoalcohol with di-tert-butyl
dicarbonate. The alcohol 3 was then activated as a tosylate,
and azide was introduced via SN2 substitution.13
On the other hand, a Merrifield resin (1% DVB, fo ) 0.74
mmol/g) was treated with propargyl alcohol under basic
(12) Approaches to recyclable organocatalysts for Michael additions,
Soluble polymers: (a) Gu, L.; Wu, Y.; Zhang, Y.; Zhao, G. J. Mol. Catal.
A 2007, 263, 186. Ionic liquids: (b) Luo, S.; Mi, X.; Zhang, L.; Liu, S.;
Xu, H.; Cheng, J. Angew. Chem., Int. Ed. 2006, 45, 3093. (c) Kotrusz, P.;
Toma, S.; Schmalz, H.; Adler, A. Eur. J. Org. Chem. 2004, 7, 1577.
Fluorous catalysts: (d) Zu, L.; Wang, J.; Li, H.; Wang, W. Org. Lett. 2006,
8, 3077.
(13) (a) Boyle, G. A.; Govender, T.; Kruger, H. G.; Maguire, G. E. M.
Tetrahedron: Asymmetry 2004, 15, 2661. (b) Koh, D. W.; Coyle, D. L.;
Mehta, N.; Ramsinghani, S.; Kim, H.; Slama, J. T.; Jacobson, M. K. J.
Med. Chem. 2003, 46, 4322.
3718
Org. Lett., Vol. 9, No. 19, 2007