Iron(III)-Salen Complexes as Enzyme Models
J . Org. Chem., Vol. 67, No. 5, 2002 1507
Sch em e 1
type of salen complex in the epoxidation of simple
olefins.3
3,34
It is possible to introduce chiral substituents
at C3 and C3′ sites of the phenolic part of the salen ligand
cf. eq 1 for the structure of iron-salen complexes). These
(
stereogenic carbon atoms reside proximate to the metal
center, and this renders the salen ligand a promising
chiral template for the construction of an asymmetric
reaction site. To understand the mechanism of oxygen
transfer from oxometal ions, for example, oxometal
porphyrin and oxo(salen)metal complexes, organic sul-
fides seem to be better substrates than olefins because
of the efficient reactivities of sulfides and absence of other
an electron-transfer mechanism is possible, also viable
•
+
is a direct oxygen-transfer mechanism from the Por s
IV
13
Fe dO to sulfide as shown in Scheme 1, path c.
undesired reactions.
To establish the nature of the reactive intermediate
and the mechanism of cytochrome P450-catalyzed oxida-
tion of biological substrates, extensive studies have been
made using synthetic model iron-porphyrins in different
oxidation states and with various ligands with the aid of
With the aim of establishing the optimum conditions
for the synthesis of organic sulfoxides and the mechanism
of oxometal ion oxidation of organic sulfides, we have
initiated a systematic study on the kinetics of oxo(salen)-
metal ion oxidation of the above substrates and already
3
5-37
spectroscopic techniques including electronic absorption,
reported the mechanism of oxo(salen)manganese(V),
NMR, EPR, and resonance Raman (RR).1
3-32
Interest-
38
39
oxo(salen)chromium(V), and oxo(salen)ruthenium(V)
oxygenation of organic sulfides. We have initially pro-
posed single electron transfer from organic sulfide to the
oxometal ion as the rate-controlling step in the oxygen
atom transfer reaction from several cationic oxo(salen)-
manganese(V)35 complexes to sulfide. However, in a
subsequent study, by comparing the reactivity of organic
sulfides and sulfoxides toward the same oxidant, oxo-
(salen)manganese(V), a common mechanism involving
the electrophilic attack of the oxygen of the oxidant at
ingly no attempt has been made so far on the use of
iron(III)-salen complexes as catalysts for the oxidation
of biologically important organic substrates, particularly
sulfides.
Salicylidene-ethylenediamines, commonly known as
salens, can form stable complexes with transition metals.
Apart from the porphyrins, the most important synthetic
ligand systems, especially in the context of catalysis for
the asymmetric oxidation of organic substrates, are the
salens,3
3,34
since metal-salen complexes have features
37
the sulfur center of the substrate has been proposed.
in common with metalloporphyrins with respect to their
structure and catalytic activity. These metal-Schiff base
complexes have been developed as catalysts for the
epoxidation of olefins and oxidation of other organic
substrates, and a breakthrough has been made with this
Similarly, the selective oxidation of organic sulfides to
sulfoxides with oxo(salen)chromium(V) complexes pro-
ceeds through the electrophilic attack of oxygen at the
sulfur center of the organic sulfide.38
The oxygenation reaction of organic sulfides with oxo-
(salen)manganese(V) and oxo(salen)chromium(V) ions
(
(
16) Fujii, H. J . Am. Chem. Soc. 1993, 115, 4641.
17) Traylor, P. S.; Kim, C.; Richards, J . L.; Xu, F.; Perrin, C. L. J .
proceeds through clear second-order kinetics, first-order
each in the oxidant and substrate, and there is no pre-
coordination between the substrate and catalyst during
the course of reaction. Enzyme-catalyzed reactions achieve
high enantioselectivity, at least in part, by inducing
substrate precoordination to the catalyst prior to reac-
tion.40 The precoordination minimizes the degrees of
freedom in the critical transition state and maximizes
the selectivity-determining interactions between the
catalyst’s asymmetric environment and the substrate.
Many successful nonenzymatic asymmetric catalyst sys-
tems operate on this principle, though a number of
exceptions have also been reported.4
Am. Chem. Soc. 1995, 117, 3468.
(
(
18) Gross, Z.; Nimri, S. Inorg. Chem. 1994, 33, 1731.
19) Czarrecki, K.; Nimri, S.; Gross, Z.; Proniewicz, L. M.; Kincaid,
J . R. J . Am. Chem. Soc. 1996, 118, 2929.
20) Ohta, T.; Matsuura, K.; Yoshizawa, K.; Morishima, I. J . Inorg.
Biochem. 2000, 82, 141 and references therein.
(
(
(
21) Vassel, K. A.; Espenson, J . H. Inorg. Chem. 1994, 33, 5491.
22) (a) Guilmet, E.; Meunier, B. Tetrahedron Lett. 1980, 21, 4449.
(
b) Guilmet, E.; Meunier, B. Tetrahedron Lett. 1982, 23, 2449.
23) Oae, S.; Watanabe, Y.; Fujimori, K. Tetrahedron Lett. 1982, 23,
189.
(
1
(
24) (a) Smegal, J . A.; Schardt, B. C.; Hill, C. L. J . Am. Chem. Soc.
1
1
983, 105, 3510. (b) Smegal, J . A.; Hill, C. L. J . Am. Chem. Soc. 1983,
05, 3515.
1-44
(
25) Mansuy, D.; Bortoli, J . F.; Momenteau, M. Tetrahedron Lett.
982, 23, 2781.
26) Roach, M. P.; Pond, A. E.; Thomas, M. R.; Boxer, S. G.; Dawson,
J . H. J . Am. Chem. Soc. 1999, 121, 12088.
27) Candeias, L. P.; Folkes, L. K.; Wardman, P. Biochemistry 1997,
6, 7081.
1
(
(35) Chellamani, A.; Alhaji, N. M. I.; Rajagopal, S.; Sevvel, R.;
Srinivasan, C. Tetrahedron 1995, 51, 12677.
(36) Chellamani, A.; Alhaji, N. M. I.; Rajagopal, S. J . Chem. Soc.,
Perkin Trans. 2 1997, 299.
(37) Chellamani, A.; Kulandaipandi, P.; Rajagopal, S. J . Org. Chem.
1999, 64, 2232.
(38) Sevvel, R.; Rajagopal, S.; Srinivasan, C.; Alhaji, N. M. I.;
Chellamani, A. J . Org. Chem. 2000, 65, 3334.
(39) Kulandaipandi, P. Ph.D. Thesis, Manaonmaniam Sundaranar
University, 1999.
(40) Walsh, C. Enzymatic Reaction Mechanisms; W. H. Freeman and
Co.: New York, 1979.
(41) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93,
1307.
(42) Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New
York, 1993.
(43) Kolb, H. C.; van Nieuwenhze, M. S.; Sharpless, K. B. Chem.
Rev. 1994, 94, 2483.
(44) Palucki, M.; Finney, N. S.; Pospisil, P. J .; Guler, M. L.; Ishida,
T.; J acobsen, E. N. J . Am. Chem. Soc. 1998, 120, 948 and references
therein.
(
3
3
(
28) Yun, C. H.; Miller, G. P.; Guengerich, F. P. Biochemistry 2000,
9, 1139.
(
29) (a) Sato, H.; Guengerich, J . Am. Chem. Soc. 2000, 122, 8099.
b) Zakharieva, O.; Trautwein, A. X.; Veeger, C. Biophys. Chem. 2000,
8, 11 and references therein.
30) Guo, C. C.; Song, J . X.; Chen, X. B.; J iang, G. F. J . Mol. Catal.,
A 2000, 157, 31.
31) (a) Wirstam, M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J . Am.
(
8
(
(
Chem. Soc. 1999, 121, 10178. (b) Moore, K. T.; Horvath, I. T.; Therien,
M. J . Inorg. Chem. 2000, 39, 3125.
(
32) Ogliaro, F.; Harris, N.; Cohen, S.; Filatov, M.; de Visser, S. P.;
Shaik, S. J . Am. Chem. Soc. 2000, 122, 8977.
33) (a) Canali, L.; Sherrington, D. C. Chem. Soc. Rev. 1999, 28, 85.
b) Katsuki, T. Coord. Chem. Rev. 1995, 140, 189. (c) Ito, Y. N.; Katsuki,
T. Bull. Chem. Soc. J pn. 1999, 72, 603.
34) J acobsen, E. N. In Comprehensive Organometallic Chemistry
(
(
(
II; Wilkinson, G., Stone, F. G. A., Abel, E. W., Hegedus, L. S., Eds.;
Pergamon: New York, 1995; Vol. 12, Chapter II.1.