5316
S. B. Boga et al. / Tetrahedron Letters 50 (2009) 5315–5316
(c)
MeS
(a)
(b)
MeS
MeO2C
SMe
NH
MeO2C
SMe
N
MeO2C
MeO2C
Si
N
O
5
2
4
1
3
(f)
(e)
MeS
MeO2C
(d)
N
N
CO2tBu
N
CO2tBu
HO2C
MeO2C
CO2tBu
8
6
7
Scheme 1. Reagents and conditions: (a) SO2Cl2, CHCl3, 100%; (b) catalyst, 3, conditions (see, Table 1); (c) 1-chloroethyl chloroformate, proton sponge, CH2Cl2, 86%; (d) CH2N2,
MeOH, 100%; (e) LDA, (SMe)2, THF, À78 °C, 60%; (f) TFA, CH2Cl2, 90%.
Table 1
SPRI Structural Chemistry group for providing NMR and Mass Spec-
tral support.
[3+2] cycloaddition-mediated synthesis of 1-benzyl-3-methylsulfanyl-pyrrolidine-3-
carboxylic acid methyl ester 4
No.
Catalyst
Conditions
Yield (%)
References and notes
1
2
3
4
5
6
7
8
9
(Tf)2NH
TFA
InCl3
rt, CH2Cl2, 72 h
0 °C to rt, CH2Cl2, 72 h
rt, CH2Cl2, 72 h
rt, CH2Cl2, 72 h
0 °C to rt, CH2Cl2
13
18
30
32
33
36
60
43
49
54
22
1. (a) Pandey, G.; Banerjee, P.; Smita, R. Chem. Rev. 2006, 106, 4484–4517; (b)
Pellissier, H. Tetrahedron 2007, 63, 3235; (c) Coldham, I.; Hufton, R. Chem. Rev.
2005, 105, 2765; (d) Jorgensen, K. A.; Gothelf, K. V. Chem. Rev. 1998, 98, 863.
2. (a) Tomoyuki, S.; Kimio, L.; Yukio, S. Heterocycles 1986, 24, 1331–1346; (b)
Nichols, P. J.; Demattei, J. A.; Barnett, B. R.; Lefur, N. A.; Chuang, T.-H.; Piscopio,
A. D.; Koch, K. Org. Lett. 2006, 8, 1495–1498.
3. (a) Varma, R. S. Tetrahedron 2002, 58, 1235; (b) Cornelis, A.; Gerstmans, A.;
Laszto, P.; Mathy, A.; Ziebh, I. Catal. Lett. 1990, 6, 103; (c) Clark, J. H.; Kybett, A.
P.; Macquarrie, D. J.; Barlow, S. J.; Landon, P. J. Chem. Soc., Chem. Commun. 1989,
1353.
LiBF4
BF3ÁEt2O
CSA
rt, CH2Cl2, 72 h
Mont. K-10
Mont. K-10
Mont. K-10
Mont. K-10
Mont. K-10
10% w/w, rt, CH2Cl2, 72 h
20% w/w, rt, CH2Cl2, 72 h
30% w/w, rt, CH2Cl2, 72 h
100% w/w, rt, CH2Cl2, 72 h
10% w/w, 50 °C, Cl CH2CH2Cl, 72 h
10
11
4. Iriuchijima, S.; Tanokuchi, K.; Tadokoro, K.; Tsuchihashi, G. Agric. Biol. Chem.
1976, 40, 1031.
5. General procedure for the [3+2] cycloaddition: To
a stirred solution of 2-
ethoxyacrylate 2-methylsulfanyl-acrylic acid methyl ester 2 (136 g, 1.03 mol)
and benzyl-methoxymethyl-trimethylsilanylmethyl-amine 3 (290 g, 1.22 mol)
in dichloromethane (2.7 L) was added catalyst (see Table 1 for conditions). The
resulting solution was warmed to room temperature and was stirred for 3 days.
The crude product after filtration was purified by column chromatography on
silica gel eluting with a solution of EtOAc/hexane(1:4) to give 1-benzyl-3-
methylsulfanyl-pyrrolidine-3-carboxylic acid methyl ester 4. 1H NMR d (CDCl3)
7.30 (4H, d, J 4.2 Hz), 7.26–7.22 (1H, m, 3.9 Hz), 3.74 (3H, s), 3.67 (1H, d, J 13 Hz,
6.4 Hz), 3.63 (1H, d, J 13 Hz, 6.4 Hz), 3.34 (1H, d, J 10.2 Hz), 2.79–2.74 (1H, m),
2.70–2.58 (3H, m) 2.07 (3H, s), 2.01–1.96 (1H, m). 13C NMR (CDCl3) d 173.1,
138.5, 128.5, 128.2, 127.0, 62.3, 59.7, 54.8, 52.8, 52.5, 34.7, 13.8. HRMS (ESI)
calculated for C14H20N1O2S [M+H]+: 266.12147, found 266.12126.
In summary, we have demonstrated Montmorollonite K-10 to
be an efficient catalyst for the [3+2] cycloaddition-mediated syn-
thesis of 3-methylsulfanyl-pyrrolidine-3-carboxylic acid methyl
ester 5. Further studies on the potential synthetic applications of
this novel 3-methylsulfanyl-pyrrolidine-3-carboxylic acid methyl
ester 5 in medicinal chemistry are underway and the results will
be reported in due course.
6. Olofson, R. A.; Abbott, D. E. J. Org. Chem. 1984, 49, 2795.
Acknowledgments
7. 3-Methylsulfanyl-pyrrolidine-3-carboxylic acid methyl ester 5: 1H NMR d (CDCL3)
8.77 (1H, br s), 3.88 (1H, br s), 3.80 (3H, s), 3.63 (1H, br s), 3.56 (2H br s), 2.59
(2H, br s), 2.18 (3H, s). 13C NMR (CDCl3) d 170.0, 55.0, 53.2, 51.0, 44.4, 33.3, 13.8
HRMS (ESI) calculated for C7H14N1O2S [M+H]+: 176.07452, found 176.0741.
We thank Drs. Ismail Kola and Malcom MacCoss for their strong
support at Schering-Plough Research Institute (SPRI). We thank the