Page 9 of 11
Journal of the American Chemical Society
(5) Raciti, D.; Wang, C. Recent Advances in CO2 Reduction
formation of C2 compounds from electrochemical reduction of
CO2 at a series of copper single crystal electrodes. J. Phys. Chem.
B 2002, 106, 15-17.
(24) Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Adsorption of
CO Accompanied with Simultaneous Charge-Transfer on Copper
Single-Crystal Electrodes Related with Electrochemical Reduction
of CO2 to Hydrocarbons. Surf. Sci. 1995, 335, 258-263.
(25) Luo, W. J.; Nie, X. W.; Janik, M. J.; Asthagiri, A. Facet
Dependence of CO2 Reduction Paths on Cu Electrodes. ACS Catal.
2016, 6, 219-229.
(26) Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A.
P.; Sun, C.-J.; Cai, Z.; Guest, J. R.; Ren, Y.; Stamenkovic, V.; Curtiss,
L. A.; Liu, Y.; Rajh, T. Facet-dependent active sites of a single Cu2O
particle photocatalyst for CO2 reduction to methanol. Nat. Energy
2019, 4, 957-968.
(27) Shaw, S. K.; Berna, A.; Feliu, J. M.; Nichols, R. J.; Jacob, T.;
Schiffrin, D. J. Role of axially coordinated surface sites for
electrochemically controlled carbon monoxide adsorption on
single crystal copper electrodes. Phys. Chem. Chem. Phys. 2011, 13,
5242-5251.
Electrocatalysis on Copper. ACS Energy Lett. 2018, 3, 1545-1556.
(6) Birhanu, M. K.; Tsai, M. C.; Kahsay, A. W.; Chen, C. T.; Zeleke,
T. S.; Ibrahim, K. B.; Huang, C. J.; Su, W. N.; Hwang, B. J. Copper
and Copper-Based Bimetallic Catalysts for Carbon Dioxide
Electroreduction. Adv. Mater. Interfaces 2018, 5, 1800919.
(7) Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang,
P.; Sargent, E. H. Designing materials for electrochemical carbon
dioxide recycling. Nat. Catal. 2019, 2, 648-658.
(8) Zheng, X. L.; Ji, Y. F.; Tang, J.; Wang, J. Y.; Liu, B. F.; Steinruck,
H. G.; Lim, K.; Li, Y. Z.; Toney, M. F.; Chan, K.; Cui, Y. Theory-
guided Sn/Cu alloying for efficient CO2 electroreduction at low
overpotentials. Nat. Catal. 2019, 2, 55-61.
(9) Lum, Y.; Ager, J. W. Evidence for product-specific active sites
on oxide-derived Cu catalysts for electrochemical CO2 reduction.
Nat. Catal. 2019, 2, 86-93.
(10) Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna,
P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y. M.; Quintero-
Bermudez, R.; Dinh, C. T.; Pang, Y. J.; Zhong, M.; Zhang, B.; Li, J.;
Chen, P. N.; Liang, H. Y.; Ge, W. N.; Ye, B. J.; Sinton, D.; Yu, S. H.;
Sargent, E. H. Steering post-C-C coupling selectivity enables high
efficiency electroreduction of carbon dioxide to multi-carbon
alcohols. Nat. Catal. 2018, 1, 421-428.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(28) Lv, J. J.; Jouny, M.; Luc, W.; Zhu, W. L.; Zhu, J. J.; Jiao, F. A
Highly Porous Copper Electrocatalyst for Carbon Dioxide
Reduction. Adv. Mater. 2018, 30, 1803111.
(11) Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu,
L.; Xu, W. L. Highly Efficient CO2 Electroreduction on ZnN4-based
Single-Atom Catalyst. Angew. Chem. Int. Ed. 2018, 57, 12303-12307.
(12) Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y. F.; Liu, J.; Shen, F.
C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-
metalloporphyrin organic framework for highly selective
electroreduction of CO2. Nat. Commun. 2018, 9, 4466.
(13) Tomisaki, M.; Kasahara, S.; Natsui, K.; Ikemiya, N.; Einaga, Y.
Switchable Product Selectivity in the Electrochemical Reduction
of Carbon Dioxide Using Boron-Doped Diamond Electrodes. J.
Am. Chem. Soc. 2019, 141, 7414-7420.
(14) Diercks, C. S.; Liu, Y.; Cordova, K. E.; Yaghi, O. M. The role of
reticular chemistry in the design of CO2 reduction catalysts. Nat.
Mater. 2018, 17, 301-307.
(15) Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E.
M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang,
C. J. Covalent organic frameworks comprising cobalt porphyrins
for catalytic CO2 reduction in water. Science 2015, 349, 1208-1213.
(16) Xie, C. L.; Chen, C.; Yu, Y.; Su, J.; Li, Y. F.; Somorjai, G. A.;
Yang, P. D. Tandem Catalysis for CO2 Hydrogenation to C2-C4
Hydrocarbons. Nano Lett. 2017, 17, 3798-3802.
(17) Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface
and Interface Engineering in Copper-Based Bimetallic Materials
for Selective CO2 Electroreduction. Chem 2018, 4, 1809-1831.
(18) Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Copper nanoparticle
ensembles for selective electroreduction of CO2 to C2-C3 products.
Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10560-10565.
(19) Mistry, H.; Varela, A. S.; Kuhl, S.; Strasser, P.; Cuenya, B. R.
Nanostructured electrocatalysts with tunable activity and
selectivity. Nat. Rev. Mater. 2016, 1, 16009.
(20) Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New
insights into the electrochemical reduction of carbon dioxide on
metallic copper surfaces. Energ. Environ. Sci. 2012, 5, 7050-7059.
(21) Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.;
He, G. J.; Liang, Y. Y.; Wang, H. L. Self-Cleaning Catalyst
Electrodes for Stabilized CO2 Reduction to Hydrocarbons. Angew.
Chem. Int. Ed. 2017, 56, 13135-13139.
(22) Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro,
J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F.
Engineering Cu surfaces for the electrocatalytic conversion of CO2:
Controlling selectivity toward oxygenates and hydrocarbons. Proc.
Natl. Acad. Sci. U. S. A. 2017, 114, 5918-5923.
(29) Suen, N. T.; Kong, Z. R.; Hsu, C. S.; Chen, H. C.; Tung, C. W.;
Lu, Y. R.; Dong, C. L.; Shen, C. C.; Chung, J. C.; Chen, H. M.
Morphology Manipulation of Copper Nanocrystals and Product
Selectivity in the Electrocatalytic Reduction of Carbon Dioxide.
ACS Catal. 2019, 9, 5217-5222.
(30) Wang, L.; Nitopi, S.; Wong, A. B.; Snider, J. L.; Nielander, A.
C.; Morales-Guio, C. G.; Orazov, M.; Higgins, D. C.; Hahn, C.;
Jaramillo, T. F. Electrochemically converting carbon monoxide to
liquid fuels by directing selectivity with electrode surface area.
Nat. Catal. 2019, 2, 702-708.
(31) Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.;
Zheng, G. F. Single-Atomic Cu with Multiple Oxygen Vacancies
on Ceria for Electrocatalytic CO2 Reduction to CH4. ACS Catal.
2018, 8, 7113-7119.
(32) Ma, S.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold,
J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of Carbon
Dioxide to Hydrocarbons Using Bimetallic Cu-Pd Catalysts with
Different Mixing Patterns. J. Am. Chem. Soc. 2017, 139, 47-50.
(33) Lu, L.; Sun, X. F.; Ma, J.; Yang, D. X.; Wu, H. H.; Zhang, B. X.;
Zhang, J. L.; Han, B. X. Highly Efficient Electroreduction of CO2
to Methanol on Palladium-Copper Bimetallic Aerogels. Angew.
Chem. Int. Ed. 2018, 57, 14149-14153.
(34) Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang,
Y. J. Mixed Copper States in Anodized Cu Electrocatalyst for
Stable and Selective Ethylene Production from CO2 Reduction. J.
Am. Chem. Soc. 2018, 140, 8681-8689.
(35) Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim,
C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical
Fragmentation of Cu2O Nanoparticles Enhancing Selective C-C
Coupling from CO2 Reduction Reaction. J. Am. Chem. Soc. 2019,
141, 4624-4633.
(36) Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.;
Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.;
Strasser, P.; Cuenya, B. R. Highly selective plasma-activated
copper catalysts for carbon dioxide reduction to ethylene. Nat.
Commun. 2016, 7, 12123.
(37) Scott, S. B.; Hogg, T. V.; Landers, A. T.; Maagaard, T.;
Bertheussen, E.; Lin, J. C.; Davis, R. C.; Beeman, J. W.; Higgins, D.;
Drisdell, W. S.; Hahn, C.; Mehta, A.; Seger, B.; Jaramillo, T. F.;
Chorkendorff, I. Absence of Oxidized Phases in Cu under CO
Reduction Conditions. ACS Energy Lett. 2019, 4, 803-804.
(38) Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.;
Norskov, J. K.; Chan, K. R.; Wang, H. T. Metal ion cycling of Cu
(23) Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Selective
ACS Paragon Plus Environment