Angewandte
Chemie
groups on the support material by thermal treatment is a
crucial parameter in the preparation of stable hydroformyla-
tion systems that are selective and active for at least 60 h on
stream.
[
1] List of reviews: a) J. D. Holbrey, K. R. Seddon, Clean Prod.
Proc. 1999, 1, 223 – 236; b) T. Welton, Chem. Rev. 1999, 99,
2071 – 2083; c) P. Wasserscheid, W. Keim, Angew. Chem. 2000,
112, 3926 – 3946; Angew. Chem. Int. Ed. 2000, 39, 3772 – 3789;
We have found that the effect of the support is directly
related to the irreversible reaction of the ligand with the
acidic silanol surface groups before and during catalysis.
Therefore, the prerequisites for active, highly selective, and
long-term stable SILP catalysts are not only the ionic-liquid
solvent but also a relatively large excess of phosphine ligand
to compensate for some detrimental surface reactions.
We hope that the knowledge gained in this work will lead
to the development of new SILP catalysts for hydroformyla-
tions, hydrogenations, and CÀC coupling reactions. The
d) J. Dupont, C. S. Consorti, J. Spencer, J. Braz. Chem. Soc. 2000,
11, 337 – 344; e) R. Sheldon, Chem. Commun. 2001, 2399 – 2407;
f) C. M. Gordon, Appl. Catal. A 2001, 222, 101 – 117; g) D. Zhao,
M. Wu, Y. Kou, E. Min, Catal. Today 2002, 74, 157 – 189; h) H.
Olivier-Bourbigou, L. Magna, J. Mol. Catal. A: Chem. 2002, 182/
183, 419 – 437; i) J. Dupont, R. F. de Souza, P. A. Z. Suarez,
Chem. Rev. 2002, 102, 3667 – 3692; j) H. Zhao, S. V. Malhotra,
Aldrichimica Acta 2002, 35, 75 – 83.
[2] R. D. Rogers, K. R. Seddon, Science 2003, 302, 792 – 793, and
references therein.
[
3] a) Ionic Liquids in Synthesis, 1st ed. (Eds.: P. Wasserscheid, T.
Welton), VCH-Wiley, Weinheim, 2003; b) J. S. Wilkes, J. Mol.
Catal. A: Chem. 2004, 214, 11 – 17.
combination of well-defined catalyst complexes, nonvolatile
ionic liquids, and porous solid supports offers many advan-
tages over traditional catalysis with water (SAPC) or with
organic solvents with low vapor pressure (SLPC) on sup-
[
4] Selection of ionic liquid suppliers: a) Solvent Innovation
(
www.solvent-innovation.com); b) Sigma-Aldrich (www.sigma-
aldrich.com); Fluka (www.fluka.com); c) Merck (www.merck.-
com); d) Acros Organics (www.acros.com); e) Wako
(www.wako-chem.co.jp); f) Strem (www.strem.com).
[
17]
[18]
ports, which are clearly limited by solvent volatility. We
therefore consider the SILP catalysis concept to be a
significant contribution to the development of highly selec-
tive, heterogenized homogeneous catalysts.
[
5] A. Riisager, K. M. Eriksen, P. Wasserscheid, R. Fehrmann, Catal.
Lett. 2003, 90, 149 – 153.
[
6] a) A. Riisager, P. Wasserscheid, R. van Hal, R. Fehrmann, J.
Catal. 2003, 219, 252 – 255; b) A. Riisager, R. Fehrmann, P.
Wasserscheid, R. van Hal in Ionic Liquids III: Fundamentals,
Progress, Challenges, and Opportunities (Eds.: R. Rogers, K. R.
Seddon), ACS, Washington DC, 2004, in press.
Experimental Section
The SILP catalysts were prepared according to our previously
[
6]
reported method by impregnation of the partly dehydroxylated
silica support with an anhydrous methanolic solution of the ionic
[
7] C. P. Mehnert, R. A. Cook, N. C. Dispenziere, M. Afeworki, J.
Am. Chem. Soc. 2002, 124, 12932 – 12933.
[
19]
liquid [bmim][n-C H OSO ]
[
containing the catalyst precursor
8
17
3
[
20]
Rh(acac)(CO)2] (Aldrich, 98%) and bisphosphine ligand 1
[8] a) C. P. Mehnert, E. J. Mozeleski, R. A. Cook, Chem. Commun.
002, 3010 – 3011; b) A. Wolfson, I. F. J. Vankelecom, P. A.
under argon atmosphere using standard Schlenk techniques. The
partial dehydroxylation of the support (silica gel 100, Merck) was
performed by heating at 5008C in air for 15 h followed by storage in
2
Jacobs, Tetrahedron Lett. 2003, 44, 1195 – 1198.
9] H. Hagiwara, Y. Sugawara, K. Isobe, T. Hoshi, T. Suzuki, Org.
Lett. 2004, 6, 2325 – 2328.
10] S. Breitenlechner, M. Fleck, T. E. Mꢂller, A. Suppan, J. Mol.
Catal. A: Chem. 2004, 214, 175 – 179.
[
2
À1
vacuo over P O prior to use (BET surface area: 304 m g , pore
4
10
3
À1
volume: 1.01 cm g , mean pore diameter (monomodal): 132 ꢀ).
The continuous-flow gas-phase hydroformylation of propene was
[
performed at a total pressure of 10 bar (C H :CO:H = 1:1:1) and T=
3
6
2
[11] P. Wasserscheid, M. Eichmann, Catal. Today 2001, 66, 309 – 316.
1
008C with differential conversion (< 10% conversion) using a
[
12] C. P. Mehnert, R. A. Cook, E. J. Mozeleski, N. C. Dispenziere,
M. Afeworki, Supported ionic liquid catalysis for hydroformy-
lation and hydrogenation reactions, 226th ACS National Meet-
ing, New York, USA, 2003.
13] J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang, G.
Zhao, Angew. Chem. 2004, 116, 1421 – 1423; Angew. Chem. Int.
Ed. 2004, 43, 1397 – 1399.
14] R. van Hal, P. Wasserscheid, unpublished results.
15] Rhodium Catalyzed Hydroformylation, (Eds.: P. W. N. M. van
Leeuwen, C. Claver), Kluwer, Dordrecht, 2000.
16] a) A. J. Sandee, V. F. Slagt, J. N. H. Reek, P. C. J. Kamer,
P. W. N. M. van Leeuwen, Chem. Commun. 1999, 1633 – 1634;
b) S. M. Silva, R. P. J. Bronger, Z. Freixa, J. Dupont, P. W. N. M.
van Leeuwen, New J. Chem. 2003, 27, 1294 – 1296.
microcatalytic flow system. The solid SILP catalyst was used as a fixed
[
5,6]
bed in a stainless-steel tubular reactor, as previously described.
The activity (TOF) and selectivity (n/iso) of the catalysts were
determined directly from online FID-GC measurements (Shimadzu
GC-9A, Nukol capillary columm, 15 m ꢁ 0.53 mm ID, Supelco Inc.) of
the reaction products by comparison with authentic samples of
aldehydes.
[
[
[
FTIR spectra of the catalysts were recorded on a Perkin Elmer
Paragon 1000 FTIR spectrophotometer. Samples were prepared as
KBr catalyst wafers by pressing catalyst onto the KBr and mounted
for measurements in situ under various gas atmospheres at 1008C in a
stainless-steel variable-temperature transmittance IR cell (Infraspac
LB-100, Infraspac Ltd, Novosibirsk, Russia; Si optical windows)
having gas inlet and outlet ports and an adjustable sample holder.
With this setup each recording could be corrected for background
absorbance without changing the atmosphere.
[
[
17] a) K. T. Wan, M. E. Davis, Nature 1994, 370, 449 – 450;
b) Applied Homogeneous Catalysis with Organometallic Com-
pounds, 1st ed. (Eds.: B. Cornils, W. A. Herrmann), VCH,
Weinheim, 1996.
3
1
29
Experimental details and data from MAS P and Si NMR
spectroscopy and NH -TPD measurements are available in the
3
[18] A. Beckmann, F. J. Keil, Chem. Eng. Sci. 2003, 58, 841 – 847.
19] P. Wasserscheid, R. van Hal, A. Bꢃsmann, Green Chem. 2002, 4,
00 – 404.
Supporting Information.
[
4
Received: August 4, 2004
Published online: December 21, 2004
[20] M. S. Goedheijt, P. C. J. Kamer, P. W. N. M. van Leeuwen, J.
Mol. Catal. A: Chem. 1998, 134, 243 – 249.
Keywords: catalyst development · hydroformylation
.
ionic liquids · phosphine ligands · rhodium
Angew. Chem. Int. Ed. 2005, 44, 815 –819
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
819