optoelectronic applications.3 Since its introduction in
1975, the reaction has been well studied, making use of
a variety of ligands and copper salts as cocatalysts.4
However, the copper salts used as cocatalysts can also
induce Glaser-type homocoupling5 of the alkynes to the
corresponding symmetrical diyne via., the copper acetyl-
ide formed. To avoid this, copper- and phosphine-free
Sonogashira reactions have been developed in recent
times resulting in excellent chemoselectivity.6,7 Extensive
research continues to push the limits of this methodology
to more and more facile procedures wherein attempts
may be made to practice this reaction at ambient tem-
perature without the use of a copper cocatalyst and a
ligand. Herein, we report for the first time a copper- and
ligand-free Sonogashira reaction at ambient temperature
under ultrasound irradiation in a molecular solvent such
as acetone as well as a room-temperature ionic liquid (IL),
1,3-di-n-butylimidazolium tetrafluoroborate ([bbim]BF4),
in excellent chemoselectivity with considerably enhanced
reaction rates through the formation of stable and
crystalline clusters of zerovalent Pd nanoparticles.
The sonochemical reactions were carried out in a
thermostated (30 ( 1 °C) ultrasonic cleaning bath of
frequency 50 kHz in an inert atmosphere of argon. A
variety of aryl halides consisting of substituted iodo- and
bromobenzenes were reacted with terminal acetylenic
compounds in the absence of any added copper cocatalyst
Copper- and Ligand-Free Sonogashira
Reaction Catalyzed by Pd(0) Nanoparticles
at Ambient Conditions under Ultrasound
Irradiation
Atul R. Gholap,† K. Venkatesan,† Renu Pasricha,‡
Thomas Daniel,† Rajgopal J. Lahoti,† and
Kumar V. Srinivasan*,†
Organic Chemistry; Technology Division, and Centre for
Material Characterization, National Chemical Laboratory,
Dr. Homi Bhabha Road, Pune - 411 008, India
Received March 1, 2005
The Sonogashira reaction proceeds at ambient temperature
(30 °C) in acetone or room-temperature ionic liquid, 1,3-di-
n-butylimidazolium tetrafluoroborate ([bbim]BF4), as solvent
under ultrasound irradiation to give enhanced reaction rates,
excellent chemoselectivity, and high yields in the absence
of a copper cocatalyst and a phosphine ligand. TEM analysis
showed the formation of stable, crystalline, and polydis-
persed Pd(0) nanoparticles as catalyst for the reaction.
(3) (a) Schumm, J. S.; Pearson, D. L.; Tsur, J. M. Angew. Chem.,
Int. Ed. 1994, 33, 1360. (b) Tour, J. M.; Jones, L.; Pearson, D. L.;
Lamba, J. J. S.; Burgin, T. P.; Whitesides, G. M.; Allara, D. L.; Parikh,
A. N.; Atre, S. J. Am. Chem. Soc. 1995, 117, 9529. (c) Brunsveld, L.;
Meijer, E. W.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 2001, 123,
7978. (d) Pe’rez-Balderas, F.; Santoyo-Gonza´lez, F. Synlett 2001, 1699.
(e) Sonoda, M.; Inaba, A.; Itahashi, K.; Tobe, Y. Org. Lett. 2001, 3,
2419. (f) Wong, K. T.; Hsu, C. C. Org. Lett. 2001, 3, 173. (g) Mongin,
O.; Porres, L.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Org. Lett.
2002, 4, 719.
(4) (a) Nicolaou, K. C.; Ladduwahetty, T.; Taffer, I. M.; Zipkin, R.
E. Synthesis 1986, 344. (b) Shiga, F.; Yasuhara, A.; Uchigawa, D.;
Kondo, Y.; Sakamotot, T.; Yamanaka, H. Synthesis 1992, 746. (c) Rossi,
R.; Carpita, A.; Bellina, F. Org. Prep. Proc. Ind. 1995, 129. (d) Graham,
A. E.; McKerrecher, D.; Davies, D. H.; Taylor, R. J. K. Tetrahedron
Lett. 1996, 37, 7445. (e) Miller, M. W.; Johnson, C. R. J. Org. Chem.
1997, 62, 1582. (f) Choudary, B. M.; Madhi, S.; Chowdari, N. S.;
Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2002, 124, 14127. (g)
Tykwinski, R. R. Angew. Chem., Int. Ed. 2003, 42, 1566.
The Sonogashira coupling, a palladium-copper-cata-
lyzed reaction of aryl halides and terminal acetylenes,
is a powerful method for the formation of substituted
acetylenes.1 This reaction is frequently utilized as a key
step in natural product chemistry2 and for the synthesis
of acetylene compounds which are potentially useful in
(5) (a) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422. (b) Hay, A. S.
J. Org. Chem. 1962, 27, 3320. (c) Rossi, R.; Carpita, A.; Begelli, C.
Tetrahedron Lett. 1985, 26, 523. (d) Liu, Q.; Burton, D. J. Tetrahedron
Lett. 1997, 38, 4371. (e) For a review of alkyne coupling, see: Siemsen,
P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39,
2632.
(6) (a) Alami, M.; Ferri, F.; Linstrumelle, G. Tetrahedron Lett. 1993,
34, 6403. (b) Nguefack, J.; Bolitt, V.; Sinou, D. Tetrahedron Lett. 1996,
37, 5527. (c) Herrmann, W. A.; Bohm Volker, P. W. Eur. J. Org. Chem.
2000, 22, 3679. (d) Ryu, I.; Fukuyama, T.; Shinmen, M.; Nishitani, S.;
Sato, M. Org. Lett. 2002, 4, 1691. (e) Pal, M.; Parasuraman, K.; Gupta,
S.; Yeleswarapu, K. R. Synlett 2002, 12, 1976. (f) Alonso, D.; Najera,
C.; Pacheco, M. C. Tetrahedron Lett. 2002, 43, 9365. (g) Fu, X.; Zhang,
S.; Yin, J.; Schumacher, D. P. Tetrahedron Lett. 2002, 43, 6673. (h)
Uozumi, Y.; Kobayashi, Y. Heterocycles 2003, 59, 71.
(7) (a) Ma, Y.; Song, C.; Jiang, W.; Wu, Q.; Wang, Y.; Liu, X.; Andrus,
M. B. Org. Lett. 2003, 5, 3317. (b) Soheili, A.; Albaneze-Walker, J.;
Murry, J. A.; Dormer, P. G.; Hughes, D. L. Org. Lett. 2003, 5, 4191. (c)
Leadbeater, N. E.; Tominack, B. J. Tetrahedron Lett. 2003, 44, 8653.
(d) Gelman, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2003, 42, 5993.
(e) Park, S. B.; Alper, H. Chem. Commun. 2004, 1306. (f) Urgaonkar,
S.; Verkade, J. G. J. Org. Chem. 2004, 69, 5752. (g) Cheng, J.; Sun,
Y.; Wang, F.; Guo, M.; Xu, J.-H.; Pan, Y.; Zhang, Z. J. Org. Chem. 2004,
69, 5428. (h) Liang, B.; Dai, M.; Chen, J.; Yang, Z. J. Org. Chem. 2005,
70, 391 and references therein.
* Corresponding author. Tel: +91-20-25889089. Fax: +91-20-
25893614.
† Organic Chemistry; Technology Division.
‡ Centre for Material Characterization.
(1) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 4467. (b) Sonogashira, K.; Yatake, T.; Tohda, Y.; Takahashi, S.;
Hagihara, N. Chem. Commun. 1977, 291. (c) Sonogashira, K. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds;
Pergamon Press: Oxford, 1991; Vol. 3, Chapter 2.4, pp 521-549 and
references therein. (d) Bumagin, N. A.; Sukhomlinova, L. I.; Luzikova,
E. V.; Tolstaya, T. P.; Beletskaya, I. P. Tetrahedron Lett. 1996, 37,
897. (e) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C.
Org. Lett. 2000, 2, 1729. (f) Erdelyi, M.; Gogoll, A. J. Org. Chem. 2001,
66, 4165. (g) Sonogashira, K. J. Organomet. Chem. 2002, 46, 653.
(2) (a) Nova´k, Z.; Szabo´, A.; Re´pa´si, J.; Kotschy, A. J. Org. Chem.
2003, 68, 3327. (b) Dakin, L. A.; Langille, N. F.; Panek, J. S. J. Org.
Chem. 2002, 67, 6812. (c) Lopez-Deber, M. P.; Castedo, L.; Granja, J.
R. Org. Lett. 2001, 3, 2823. (d) Paterson, I.; Davies, R. D. M.; Marquez,
R. Angew. Chem., Int. Ed. 2001, 40, 603. (e) Toyota, M.; Komori, C.;
Ihara, M. J. Org. Chem. 2000, 65, 7110. (f) Yoshimura, F.; Kawata,
S.; Hirama, M. Tetrahedron Lett. 1999, 40, 8281. (g) Sakai, A.; Aoyama,
T.; Shioiri, T. Tetrahedron Lett. 1999, 40, 4211. (h) Miller, M. W.;
Johnson, C. R. J. Org. Chem. 1997, 62, 1582.
10.1021/jo0503815 CCC: $30.25 © 2005 American Chemical Society
Published on Web 05/07/2005
J. Org. Chem. 2005, 70, 4869-4872
4869