Organometallics
Communication
a
(3) Agou, T.; Kobayashi, J.; Kawashima, T. Evaluation of sigma-
donating ability of a 9-phosphatriptycene and its application to
catalytic reactions. Chem. Lett. 2004, 33, 1028−1029.
(4) Tsuji, H.; Inoue, T.; Kaneta, Y.; Sase, S.; Kawachi, A.; Tamao, K.
Synthesis, Structure, and Properties of 9-Phospha-10-silatriptycenes
and their Derivatives. Organometallics 2006, 25, 6142−6148.
(5) Iwai, T.; Konishi, S.; Miyazaki, T.; Kawamorita, S.; Yokokawa,
N.; Ohmiya, H.; Sawamura, M. Silica-Supported Triptycene-Type
Phosphine. Synthesis, Characterization, and Application to Pd-
Catalyzed Suzuki−Miyaura Cross-Coupling of Chloroarenes. ACS
Catal. 2015, 5, 7254−7264.
Scheme 2. Hydroformylation of Cyclic Enol Ethers
(6) Drover, M. W.; Nagata, K.; Peters, J. C. Fusing triphenylphos-
phine with tetraphenylborate: introducing the 9-phosphatriptycene-
10-phenylborate (PTB) anion. Chem. Commun. 2018, 54, 7916−
7919.
a
Conditions: [Rh(acac)(CO)2] 0.050 mol %, ligand 1 0.10 mol %;
b
[enol ether]initial = 1.2 M. Reaction proceeded to 70% completion.
Yields were determined by GC with respect to internal standard.
(7) Konishi, S.; Iwai, T.; Sawamura, M. Synthesis, Properties, and
Catalytic Application of a Triptycene-Type Borate-Phosphine Ligand.
Organometallics 2018, 37, 1876−1883.
(8) Hellwinkel, D.; Schenk, W.; Blaicher, W. Heterotriptycenes;
structural calculations and NMR relations. Chem. Ber. 1978, 111,
1798−1814.
active catalyst systems for the hydroformylation of internal
cyclic alkenes, including cyclic enol ethers.
́
(9) Trzeciak, A. M.; Ziołkowski, J. J. Perspectives of rhodium
ASSOCIATED CONTENT
■
organometallic catalysis. Fundamental and applied aspects of
S
* Supporting Information
hydroformylation. Coord. Chem. Rev. 1999, 190−192, 883−900.
The Supporting Information is available free of charge on the
̈
(10) Franke, R.; Selent, D.; Borner, A. Applied Hydroformylation.
Chem. Rev. 2012, 112, 5675−5732.
(11) Pruett, R. L.; Smith, J. A. Low-pressure system for producing
normal aldehydes by hydroformylation of.alpha.-olefins. J. Org. Chem.
1969, 34, 327−330.
Experimental procedures and spectral and crystallo-
(12) van Leeuwen, P. W. N. M.; Roobeek, C. F. Hydroformylation
of less reactive olefins with modified rhodium catalysts. J. Organomet.
Chem. 1983, 258, 343−350.
Accession Codes
CCDC 1857239 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
́
́
(13) Polo, A.; Real, J.; Claver, C.; Castillon, S.; Bayon, J. C. Low-
pressure selective hydroformylation of 2,3- and 2,5-dihydrofuran with
a rhodium catalyst. Unexpected influence of the auxiliary ligand tris(o-
t-butylphenyl) phosphite. J. Chem. Soc., Chem. Commun. 1990, 600−
601.
(14) van Rooy, A.; Orij, E. N.; Kamer, P. C. J.; van den Aardweg, F.;
van Leeuwen, P. W. N. M. Hydroformylation of oct-1-ene with
extremely high rates using rhodium catalysts containing bulky
phosphites. J. Chem. Soc., Chem. Commun. 1991, 1096−1097.
(15) Jongsma, T.; Challa, G.; van Leeuwen, P. W. N. M. A
mechanistic study of rhodium tri(o-t-butylphenyl)phosphite com-
plexes as hydroformylation catalysts. J. Organomet. Chem. 1991, 421,
121−128.
(16) van Rooy, A.; Orij, E. N.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M. Hydroformylation with a Rhodium/Bulky Phosphite Modified
Catalyst. Comparison of the Catalyst Behavior for Oct-1-ene,
Cyclohexene, and Styrene. Organometallics 1995, 14, 34−43.
AUTHOR INFORMATION
Corresponding Author
ORCID
■
Present Address
§Department of Chemistry, Saint Anselm College, Manchester,
New Hampshire 03102, United States.
Notes
́
́
(17) Fernandez, E.; Ruiz, A.; Claver, C.; Castillon, S.; Polo, A.;
Piniella, J. F.; Alvarez-Larena, A. Regio- and Stereoselective
Hydroformylation of Glucal Derivatives with Rhodium Catalysts.
Organometallics 1998, 17, 2857−2864.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
̈
̈
(18) Selent, D.; Wiese, K.-D.; Rottger, D.; Borner, A. Novel
Oxyfunctionalized Phosphonite Ligands for the Hydroformylation of
Isomeric n-Olefins. Angew. Chem., Int. Ed. 2000, 39, 1639−1641.
(19) Breit, B. Highly regioselective hydroformylation under mild
conditions with new classes of π-acceptor ligands. Chem. Commun.
1996, 2071−2072.
We thank the American Chemical Society Petroleum Research
Fund (Award Number 54739-ND3) for generous support of
this project and Peach State Laboratories, Inc. for support to
J.W.N. Profs. Charles L. Liotta and Christopher W. Jones
kindly allowed us the use of their groups’ Parr reactors and gas
chromatographs, and Dr. Robert A. Braga allowed the use of an
FT-IR spectrometer. We thank them and Prof. E. Kent
Barefield for helpful discussions.
(20) Breit, B.; Winde, R.; Harms, K. Phosphabenzene−rhodium
catalysts for the efficient hydroformylation of terminal and internal
olefins. J. Chem. Soc., Perkin Trans. 1 1997, 1, 2681−2682.
(21) Breit, B.; Winde, R.; Mackewitz, T.; Paciello, R.; Harms, K.
Phosphabenzenes as Monodentate π-Acceptor Ligands for Rhodium-
Catalyzed Hydroformylation. Chem. - Eur. J. 2001, 7, 3106−3121.
(22) Breit, B.; Fuchs, E. Phosphabarrelene-rhodium complexes as
highly active catalysts for isomerization free hydroformylation of
internal alkenes. Chem. Commun. 2004, 694−695.
REFERENCES
■
(1) Hellwinkel, D.; Schenk, W. Azaphosphatriptycene. Angew. Chem.,
Int. Ed. Engl. 1969, 8, 987−988.
(2) Jongsma, C.; de Kleijn, J. P.; Bickelhaupt, F. Phosphatriptycene.
Tetrahedron 1974, 30, 3465−3469.
C
Organometallics XXXX, XXX, XXX−XXX