Journal of the American Chemical Society
tioned for the reaction, resulting in enantioselectivity.
Page 4 of 6
REFERENCES
1
2
3
4
5
6
7
8
This model is in agreement with the observed preference
in catalysis for planar conjugated molecules such as 1a
and unsubstituted indole 2e. The observed competition
between 2a and Cu(II)-L1 in binding LmrR implies that
both substrates and Cu(II) complex prefer to bind, at least
partly, in the same location, which suggests significant
dynamics during catalysis.
(1) (a) Bos, J.; Roelfes, G. Curr. Opin. Chem. Biol. 2014, 19, 135;
(b) J. C. Lewis, ACS Catal. 2013, 3, 2954-2975. (c) Rosati, F.;
Roelfes, G.; ChemCatChem 2010, 2, 916; (d) Wilson, M. E.;
Whitesides, G. M. J. Am. Chem. Soc. 1978, 100, 306.
(2) Muñoz Robles, V.; Ortega-Carrasco, E.; Alonso-Cotchico,
L.; Rodriguez-Guerra, J. Lledós; A.; Maréchal, J.-D. ACS Catal.
2015, 5, 2469; (b) Dürrenberger, M.; Ward, T. R. Curr. Opin.
Chem. Biol. 2014, 19, 99 (c) Kiss, G.; Ҫelibi-Ölҫüm, N.; Moretti, R.;
Baker, D.; Houk, K.N. Angew. Chem. Int. Ed. 2013, 52, 5700.
(3) (a) Bordeaux, M.; Tyagi, V.; Fasan, R. Angew. Chem. Int. Ed.
2015, 54, 1744; (b) Yu, F.; Cangelosi, V. M.; Zastrow, M. L.; Tego-
ni, M.; Plegaria, J. S.; Tebo, A. G.; Mocny, C. S.; Ruckthong, L.;
Qayyum, H.; Pecoraro, V.L. Chem. Rev. 2014, 114, 3495; (c) Song,
W. J.;Tezcan, F. A. Science 2014, 346, 1525; (d) Coelho, P.S;
Brustad, E. M.; Kannan, A.; Arnold, F.H. Science 2013, 309, 337;
(e) Mills, J. –H.; Khare, S. D.; Bolduc, J. M.; Forouhar, F.; Mulli-
gan, V. K. ; Lew, S.; Seetharaman, J.; Tong, L.; Stoddard, B. L.;
Baker, D.; J. Am. Chem. Soc. 2013, 135, 13393; (f)Zastrow, M. L.,
Peacock, A. F. A., Stuckey, J. A.; Pecoraro, V. L. Nature Chem.,
2012, 4, 118; (g) Lu, Y.; Yeung, N. Sieracki, N.; Marshall, N. M.;
Nature 2009, 460, 855.
(4) (a) Zimbron, J. M.; Heinisch, T.; Schmid, M.; Hamels, D.;
Nogueira, E. S.; Schirmer, T.; Ward, T.R. J. Am. Chem. Soc. 2013,
135, 5384; (b) Hyster, T. K.; Knörr, L.; Ward, T. R.; Rovis, T. Sci-
ence 2012, 338, 500; (c) Ward, T. R. Acc. Chem. Res. 2011, 44, 47.
(5) For other examples see: (a) Chevallez, A.; Cherrier, M. V.;
Fontecilla-Camps, J. C.; Ghasemi, M.; Salmain, Dalton Trans.
2014, 43, 5482; (b)Esmieu, C.; Cherrier, M. V.; Amara, P.; Girgen-
ti, E.; Marchi-Delapierre, C.; Oddon, F.; Iannello, M.; Jorge-Robin
A.; Cavazza, C.; Ménage, S. Angew. Chem. Int. Ed. 2013, 52, 3922;
(c) Monnard, F. W.; Nogueira, E. S.; Heinisch, T.; Schirmer, T.;
Ward, T.R. Chem. Sci. 2013, 4, 3269; (d) Reetz, M. T.; Jiao, N.
Angew. Chem. Int. Ed. 2006, 45, 2416; (e) Mahammed, A.; Gross,
Z. J. Am. Chem. Soc. 2005, 127, 2883; (f) Ohashi, M.; Koshiyama,
T.; Ueno, T.; Yanase, M.; Fujii, H.; Watanabe, Y. Angew. Chem.
Int. Ed. 2003, 42, 1005.
(6) Agustiandari, H.; Lubelski, J.; Bart den Berg van Saparoea,
H.; Kuipers, O. P.; Driessen, A. J. M. J. Bacteriol. 2008, 190, 759.
(7) (a) Madoori, P. K.; Agustiandari, H.; Driessen, A. J. M.;
Thunnissen, A. -M. W. H. EMBO J. 2009, 28, 156; (b) Takeuchi,
K.; Tokunaga, Y.; Imai, M.; Takahashi, H.; Shimada, I. Sci. Rep.
2014, 4, 6922.
(8) (a) I. Drienovská, A. Rioz-Martínez, A. Draksharapu, G.
Roelfes, Chem. Sci. 2015, 6, 770; (b) Bos, J.; García-Herraiz, A.;
Roelfes, G. Chem. Sci. 2013, 4, 3578; (c) Bos, J.; Fusetti, F.; Dries-
sen, A. J. M.; Roelfes, G. Angew. Chem. Int. Ed. 2012, 51, 7472.
(9) (a) Boersma, A. J.; Feringa, B. L.; Roelfes, G. Angew. Chem.
Int. Ed. 2009, 48, 3346; (b) Evans, D. A.; Fandrick, K. R.; Song, H.;
Scheidt, K. A.; Xu, R. J. Am. Chem. Soc. 2007, 129, 10029.
(10) The binding constant of indole 2a to LmrR_LM could not
be established due to spectral overlap.
In conclusion, we have introduced a novel design of an
artificial metalloenzyme, created by supramolecular bind-
ing of a catalytically active Cu(II) complex in the hydro-
phobic cavity the dimer interface of LmrR. A key element
of the present design is the promiscuity of the hydropho-
bic cavity of LmrR that can accept many compounds,
including substrates and catalytically active transition
metal complexes, without requiring specific ligand - pro-
tein interactions, as is the case in most supramolecular
artificial metalloenzyme designs. The success of this ap-
proach was manifested in the catalyzed asymmetric vi-
nylogous Friedel-Crafts alkylation of indoles in water,
giving rise to excellent ee’s. The results of this study sug-
gest that precise design of second coordination sphere
interactions may not always be the most appropriate
approach a priori to achieving high selectivity in artificial
metalloenzyme catalysis, provided that substrates and
metal complexes have enough freedom to find themselves
the optimum orientation and interactions in a promiscu-
ous chiral space. The present design is highly flexible and
is envisioned to be adapted readily for binding other met-
al complexes and catalysis of other reactions. It is notable
also that LmrR is the first scaffold that has been used
successfully in multiple anchoring strategies, thus under-
lining the versatility of LmrR as a scaffold for artificial
metalloenzymes.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information. Detailed experimental proce-
dures, characterization data and additional results of cataly-
sis experiments. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
*j.g.roelfes@rug.nl.
ACKNOWLEDGMENT
We wish to thank P. Dijkstra, I. Drienovská and L. Villarino
Palmaz for assistance with protein expression and the fluo-
rescence decay lifetime experiments. Support from the
NRSC-Catalysis, the European Research Council (starting
grant no. 280010) and the Ministry of Education, Culture and
Science (Gravitation program no. 024.001.035) is gratefully
acknowledged. AJMD acknowledges the research program on
biobased ecologically balanced sustainable industrial chemis-
try (BE-BASIC) for support.
(11) Due to the strong dependence on the indole (2) concen-
tration, relatively large errors were sometimes observed in the
conversions.
(12) Draksharapu, A.; Boersma, A. J.; Leising, M.; Meetsma, A.;
Browne, W.R.; Roelfes G. Dalton Trans. 2015, 44, 3647.
ACS Paragon Plus Environment