ARTICLE IN PRESS
2442
T.-S. You et al. / Journal of Solid State Chemistry 182 (2009) 2430–2442
and the orbitals of the isolated fragments, [GaHn] and [TtHn]
(n ¼ 2, 3). These results are summarized in Table 5. As expected,
GaꢀSi interactions are stronger than GaꢀGe. The estimated
relative energies associated with 8-electron and 9-electron
planar (sp2) or puckered (sp3) 63 [GaTt] nets are evaluated using
these interaction energies applied to the appropriate electronic
configuration, which is also listed in Table 5. This semi-
quantitative analysis indicates that at 9eꢀ, local sp2 hybridization
is favored for the silicides whereas local sp3 hybridization is
preferred for the germanides. For 8eꢀ, local sp3 hybridization is
preferred for both silicides and germanide systems.
References
[1] J.H. Westbrook, R.L. Fleisher (Eds.), Intermetallic Compounds: Principle and
Practices, Wiley, New York, 1995.
[2] R. Nesper, Prog. Solid State Chem. 20 (1990) 1.
[3] G.J. Miller, in: S.M. Kauzlarich (Ed.), Chemistry, Structure, and Bonding of Zintl
Phases and Ions, VCH Publishers, New York, 1996, p. 1.
[4] [a] H. Scha¨fer, Ann. Rev. Mater. Sci. 5 (1985) 1;
[b] H. Scha¨fer, B. Eisenmann, W. Mu¨ller, Angew. Chem. 85 (1973) 742.
[5] G.J. Miller, C.-S. Lee, W. Choe, in: G. Meyer (Ed.), Highlights in Inorganic
Chemistry, Wiley-VCH, Heidelberg, 2002, p. 21.
[6] R. Dronskowski, P. Blo¨chl, J. Phys. Chem. 97 (1993) 8617.
[7] R. Hughbanks, R. Hoffmann, J. Am. Chem. Soc. 105 (1983) 3528.
[8] M.T. Klem, J.T. Vaughy, J.G. Harp, J.D. Corbett, Inorg. Chem. 40 (2001) 7020.
[9] O. Sichevych, M. Kohout, W. Schnelle, H. Borrmann, R. Cardoso Gil, M.
Schmidt, U. Burkhardt, Yu. Grin, Inorg. Chem. 48 (2009) 6261.
[10] D. Gout, E. Benbow, O. Gourdon, G.J. Miller, J. Solid State Chem. 176 (2003)
538.
4. Summary
[11] G.Q. Huang, M. Liu, L.F. Chen, D.Y. Xing, Physica C 423 (2005) 9.
[12] M. Imai, E. Abe, J. Ye, K. Nishida, T. Kimura, K. Honma, H. Abe, H. Kitazawa,
Phys. Rev. Lett. 87 (2001) 077003.
[13] M. Imai, K. Nishida, T. Kimura, H. Abe, Appl. Phys. Lett. 80 (2002) 1019.
[14] M. Imai, K. Nishida, T. Kimura, H. Kitazawa, H. Abe, H. Kito, K. Yoshii, Physica C
382 (2002) 361.
[15] B. Lorenz, J. Lenzi, J. Cmaidalka, R.L. Meng, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Physica
C 383 (2002) 191.
[16] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410
(2001) 63.
A total of 16 Eu(Ga1ꢀxTtx)2 samples (Tt ¼ Si, Ge, 0rxr1) were
synthesized using high temperature methods and characterized using
powder and single-crystal X-ray diffraction. According to the magnetic
susceptibilities and X-ray absorption spectra of certain examines, Eu
exhibits divalent behavior in these phases. The Eu(Ga1ꢀxSix)2 series
adopts the AlB2-type structure over a wide composition range
covering ca. 8.4–9.5 valence electrons per formula unit, which can
be understood by orbital interactions within each 63 net. As the Si
content increases, there is an increasing tendency for the hexagonal
nets to pucker. On the other hand, Eu(Ga1ꢀxGex)2 samples adopt the
AlB2-type for Ge-poor compositions, ranging between ca. 8.5 and 8.9
valence electrons per formula unit. On the Ge-rich side, however,
puckered 63 nets develop in EuGaGe and EuGe2, as well as two
intergrowth structures of these two. The structural behavior of these
silicides and germanides can be qualitatively understood on the
differences in atomic sizes and electronegativities coupled with the
observed valence electron counts.
[17] M.J. Evans, G.P. Holland, J.P. Garcia-Garcia, U. Ha¨ussermann, J. Am. Chem. Soc.
130 (2008) 12139.
[18] T.-S. You, Yu. Grin, G.J. Miller, Inorg. Chem. 46 (2007) 8801.
[19] T.-S. You, S. Lidin, O. Gourdon, Y. Wu, G.J. Miller, Inorg. Chem. 48 (2009) 6380.
[20] T.-S. You, G.J. Miller, Inorg. Chem. 48 (2009) 6391.
[21] K.H.J. Buschow, D.B. Mooij, J. Less-Common Met. 97 (1984) L5.
[22] A.R. Miedema, J. Less-Common Met. 46 (1976) 167.
[23] O. Sichevych, R. Cardoso-Gil, Yu. Grin, Z. Kristallogr. NCS 221 (2006) 261.
[24] B.A. Hunter, C.J. Howard, Rietica, Australian Nuclear Science and Technology
Organization, Menai, Australia, 2000.
[25] XRD single crystal software. Bruker Analytical X-ray System: Madison, WI,
2002.
[26] X-SHAPE, Program for numeric absorption, version 1.03; Stoe
Darmstadt, Germany, 1998.
& Cie:
[27] SHELXTL, version 5.1; Bruker AXS Inc., Madison, WI, 1998.
[28] L.G. Akselrud, P.Yu. Zavalii, Yu. Grin, V.K. Pecharski, B. Baumgartner, E. Wo¨lfel,
Mater. Sci. Forum 133–136 (1993) 335.
Acknowledgments
[29] J. Emsley, The Elements, Clarendon press, Oxford, 1998.
[30] O.K. Andersen, Phys. Rev. B 34 (1986) 2439.
[31] O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53 (1984) 2571.
[32] O.K. Andersen, O. Jepsen, D. Glo¨tzel, in: F. Bassani, F. Fumi, M.Tosi (Eds.),
Highlights of Condensed Matter Theory, New York, North-Holland, Lam-
brecht, W. R. L., 1985.
[33] O. Jepsen, O.K. Andersen, Z. Phys. B 97 (1995) 35.
[34] P.E. Blo¨chl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49 (1994) 16223.
[35] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) RC558.
[36] G. Kresse, J. Furthmu¨ller, Phys. Rev. (1996) 11169.
[37] G. Kresse, J. Furthmu¨ller, Comput. Mater. Sci. 6 (1996) 15.
[38] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.
[39] G. Kresse, J. Hafner, J. Phys.: Condens. Matter 6 (1994) 824.
[40] J. Evers, G. Oehlinger, A. Weiss, F. Hulliger, J. Less-Common Met. 90 (1983)
L19.
[41] R.-D. Hoffmann, R. Po¨ttgen, Z. Kristallogr. 216 (2001) 127.
[42] S. Bobev, E.D. Bauer, J.D. Thompson, J.L. Sarrao, G.J. Miller, B. Eck, R. Dronskow-
ski, J. Solid State Chem. 177 (2004) 3545.
[43] E.I. Gladyshevsky, Dopl. Akad. Nauk Ukr. RSR 2 (1964) 209.
[44] I. Mayer, I. Felner, J. Solid State Chem. 8 (1973) 355.
[45] R. Po¨ttgen, D. Johrendt, Chem. Mater. 12 (2000) 875.
[46] D. Johrendt, G. Kotzyba, H. Trill, B.D. Mosel, H. Eckert, Th. Fickenscher, R.
Po¨ttgen, J. Solid State Chem. 164 (2002) 201.
This work was supported by NSF DMR 02-41092 and 06-05949.
The authors are grateful to Dr. Warren Straszheim for the EDXS
measurements and Stefan Hu¨ckmann for powder diffraction
measurements. G.J.M., T.-S.Y. and J.T.Z. also thank the Max-Planck
Society for the research fellowships.
Supporting Information Available: X-ray crystallographic
files in CIF format, atomic coordinates and equivalent displace-
ment parameters for Eu(Ga1ꢀxGex)2 (x ¼ 0.25(2), 0.35(2), 0.45(5),
0.50(2), 0.55(2), 0.60(2)), Wigner-Seitz (WS) atomic sphere radii
of elements used for LMTO calculations, computational details
and energy comparison for two ‘‘EuSi2’’ models, calculated IDOS
values for Eu(Ga0.45Ge0.55)2, selected powder X-ray diffraction
patterns of Eu(Ga1ꢀxSix)2, the Si-Si COHP curve of the relaxed
EuGe2-type ‘‘EuSi2’’, and band structure of Eu(Ga0.5Ge0.5)2 with
fatband contributions of Eu 5d orbitals. This material is available
[47] C. Zheng, R. Hoffmann, Inorg. Chem. 28 (1989) 1074.
[48] J.K. Burdett, Molecular Shapes, Wiley-Interscience, New York, 1980.
[49] L.C. Allen, J. Am. Chem. Soc. 111 (1989) 9003.
Appendix 1. Supporting Information
Supplementary data associated with this article can be found