Journal of the American Chemical Society
Communication
(12) The average TOF was further investigated up to a reaction time
of 6 h showing a slight decrease to 12 700 h−1; see the SI (Table S1).
Additionally, the influence of air and water was also studied in the
conversion of substrates 2b, 2d, and 2f′; only a small effect of added
water was noted on the product yield observed for the conversion of
substrate 2d; see the SI (Table S2). The combined data show that the
used catalyst system is highly robust and, furthermore, can be handled
in air.
(13) MEK was used when solid substrates were employed; this
solvent is known to be among the best solvents for CO2 dissolution
and thus for an optimal conversion; see for instance ref 4b.
(14) For the substrate scope we used NBu4X (X = Br, I) as
cocatalysts, as these are cheaper, more accessible, and effective enough
compared with the PPN salts.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
C.J.W. and N.K. contributed equally.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENTS
■
(15) Successful synthetic approaches towards such carbonates
include: (a) Sanders, D. P.; Fukushima, K.; Coady, D. J.; Nelson, A.;
Fujiwara, M.; Yasumoto, M.; Hedrick, J. L. J. Am. Chem. Soc. 2010,
132, 14724. (b) Li, C.-Y.; Wu, C.-R.; Liu, Y.-C.; Ko, B.-T. Chem.
Commun. 2012, 48, 9628.
We thank ICIQ, ICREA, and the Spanish Ministerio de
́
Economıa y Competitividad (MINECO) through Project
́
́
CTQ-2011-27385 for support and Dr. Noemı Cabello, Sofıa
́
Arnal, and Vanessa Martınez for the MS analyses.
(16) Recently Gabriele and co-workers reported a Pd-catalyzed route
towards multiply substituted cyclic carbonates by an oxidative
carbonylation of 1,2- and 1,3-diols. The yield for carbonate 2q in
this case was only 39%. See: Gabriele, B.; Mancuso, R.; Salerno, G.;
Veltri, L.; Costa, M.; Dibenedetto, A. ChemSusChem 2011, 4, 1778.
(17) (a) Darensbourg, D. J.; Horn, A., Jr; Moncada, A. I. Green Chem.
2010, 12, 1376. (b) Darensbourg, D. J.; Ganguly, P.; Choi, W. Inorg.
Chem. 2006, 45, 3831. (c) Whiteoak, C. J.; Martin, E.; Martínez
Belmonte, M.; Benet-Buchholz, J.; Kleij, A. W. Adv. Synth. Catal. 2012,
354, 469. (d) Darensbourg, D. J.; Moncada, A. I.; Choi, W.;
Reibenspies, J. H. J. Am. Chem. Soc. 2008, 130, 6523.
(18) (a) Darensbourg, D. J.; Moncada, A. I. Macromolecules 2010, 43,
5996. (b) Matsuo, J.; Aoki, K.; Sanda, F.; Endo, T. Macromolecules
1998, 31, 4432. See also ref 17d.
(19) Kricheldorf, H. R.; Jenssen, J. J. Macromol. Sci., Chem. 1989, A26,
631.
REFERENCES
■
(1) (a) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975.
(b) Carbon Dioxide as Chemical Feedstock; Aresta, M., Ed.;Wiley-VCH:
Weinheim, 2010. (c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.
2007, 107, 2365. (d) Sakakura, T.; Kohno, K. Chem. Commun. 2009,
1312. (e) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ.
Sci. 2010, 3, 43. (f) Martin, R.; Kleij, A. W. ChemSusChem 2011, 4,
1259.
(2) Illustrative examples of new conversions include: (a) Das Neves
́
Gomes, C.; Jacquet, O.; Villiers, C.; Thuery, P.; Ephritikhine, M.;
Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187. (b) Jacquet, O.; Das
Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012,
134, 2934. (c) Yu, D.; Zhang, Y. Proc. Natl. Acad. Sci. U.S.A. 2010, 107,
20184.
(3) (a) Decortes, A.; Castilla, A. M.; Kleij, A. W. Angew. Chem., Int.
Ed. 2010, 49, 9822. (b) North, M.; Pasquale, R.; Young, C. Green
Chem. 2010, 12, 1514. (c) Kember, M. R.; Knight, P. D.; Reung, P. T.
R.; Williams, C. K. Angew. Chem., Int. Ed. 2009, 48, 931.
(d) Darensbourg, D. J. Chem. Rev. 2007, 107, 2388. (e) Bruckmeier,
C.; Rieger, B.; Herrmann, W. A.; Kuhn, F. E. Angew. Chem., Int. Ed.
̈
2011, 50, 8510.
(4) (a) Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123,
11498. (b) Decortes, A.; Kleij, A. W. ChemCatChem 2011, 3, 831.
(c) North, M.; Pasquale, R. Angew. Chem., Int. Ed. 2009, 48, 2946.
(d) Buchard, A.; Kember, M. R.; Sandeman, K. G.; Williams, C. K.
Chem. Commun. 2011, 47, 212. (e) Lu, X.-B.; Darensbourg, D. J. Chem.
Soc. Rev. 2012, 41, 1462. (f) Sujith, S.; Min, J. K.; Seong, J. E.; Na, S. J.;
Lee, B. Y. Angew. Chem., Int. Ed. 2008, 47, 7306. (g) Cohen, C. T.;
Chu, T.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 10869.
(5) Ema, T.; Miyazaki, Y.; Koyama, S.; Yano, Y.; Sakai, T. Chem.
Commun. 2012, 48, 4489.
(6) Minakata, S.; Sasaki, I.; Ide, T. Angew. Chem., Int. Ed. 2010, 49,
1309.
(7) For examples, see: (a) Jung, J. H.; Ree, M.; Chang, T. J. Polym.
Sci., Part A: Poly. Chem. 1999, 37, 3329. (b) Ji, D.; Lu, X.; He, R. Appl.
Catal. A: General 2000, 203, 329. (c) Lu, X.-B.; Zhang, Y.-J.; Liang, B.;
́
Li, X.; Wang, H. J. Mol. Catal. A: Chem. 2004, 210, 31. (d) Melendez,
J.; North, M.; Pasquale, R. Eur. J. Inorg. Chem. 2007, 3323. (e) Bok, T.;
Noh, E. K.; Lee, B. Y. Bull. Korean Chem. Soc. 2006, 27, 1171.
(f) Castro-Osma, J. A.; Lara-Sanchez, A.; North, M.; Otero, A.;
́
Villuendasa, P. Catal. Sci. Technol. 2012, 2, 1021. (g) North, M.;
Young, C. Catal. Sci. Technol. 2011, 1, 93.
(8) Clegg, W.; Harrington, R. W.; North, M.; Pasquale, R. Chem.
Eur. J. 2010, 16, 6828.
(9) Tian, D.; Liu, B.; Gan, Q.; Li, H.; Darensbourg, D. J. ACS Catal.
2012, 2, 2029.
(10) Further details in CCDC 902502 and in the SI.
(11) Groysman, S.; Goldberg, I.; Kol, M.; Genezi, E.; Goldschmidt,
Z. Adv. Synth. Catal. 2005, 347, 409.
1231
dx.doi.org/10.1021/ja311053h | J. Am. Chem. Soc. 2013, 135, 1228−1231