ACS Catalysis
Research Article
the p-nitrobenzonitrile resonance at 8.32 ppm (d, J = 8.5 Hz)
and the appearance of the amide resonance at 8.27 (d, J = 8.6
Hz) in the H NMR spectrum.
REFERENCES
■
(1) Ahmed, T. J.; Knapp, S. M. M.; Tyler, D. R. Coord. Chem. Rev.
2011, 255, 949−974.
1
Hydration of ACH with AgNO3 and KCN. ACH (10 μL,
0.109 mmol) was added to a solution containing 100 μL of
AgNO3 (58.87 mM) and varying amounts of KCN (24.5 mM)
that had been diluted to 1610 μL. This mixture was heated to
90 °C while being stirred in a 1 dram screwcap vial with a
septum cap. Aliquots (100 μL) were removed periodically using
a gastight syringe and combined in an NMR tube with 500 μL
of a 10.86 mM NMe4PF6 solution in D2O. The progress of the
reaction was monitored by observing the disappearance of the
methyl resonance of acetone cyanohydrin at 1.57 ppm [s, 6H,
HO(CH3)2CCN] and the appearance of the amide resonance
at 1.34 ppm [s, HO(CH3)2CC(O)NH2].
(2) Green, M. M.; Witcoff, H. A. Organic Chemistry Principles and
Industrial Practice; Wiley-VCH: Weinheim, Germany, 2003.
(3) Bizzari, S. Chemical Economics Handbook; SRI Consulting: Menlo
Park, CA, 2010.
(4) García-Alvarez, R.; Crochet, P.; Cadierno, V. Green Chem. 2013,
15, 46.
́
(5) Kukushkin, V. Y.; Pombeiro, A. J. L. Inorg. Chim. Acta 2005, 358,
1−21.
(6) Ahmed, T. J.; Fox, B. R.; Knapp, S. M. M.; Yelle, R. B.; Juliette, J.
J.; Tyler, D. R. Inorg. Chem. 2009, 48, 7828−7837.
(7) Knapp, S. M. M.; Sherbow, T. J.; Juliette, J. J.; Tyler, D. R.
Organometallics 2012, 31, 2941−2944.
(8) Yan, N.; Xiao, C.; Kou, Y. Coord. Chem. Rev. 2010, 254, 1179−
1218.
General Procedure for the Hydration of ACH with
KAg(CN)2. ACH (10 μL, 0.109 mmol) was added to 1000 μL
of a 5.03 mM solution of KAg(CN)2 in water. In some cases, a
solution of PTA (100 μL of a 50 mM solution in H2O) was
added to the catalyst solution. This solution was heated to 90
°C while being stirred in a 1 dram screwcap vial capped with a
septum. Aliquots (100 μL) were removed periodically using a
gastight syringe and combined in an NMR tube with 500 μL of
a 10.86 mM NMe4PF6 internal standard solution in D2O. The
progress of the reaction was monitored by observing the
disappearance of the methyl resonance of acetone cyanohydrin
at 1.57 ppm [s, 6H, HO(CH3)2CCN] and the appearance of
the amide resonance at 1.34 ppm [s, HO(CH3)2CC(O)NH2].
Hydration of Benzonitrile with KAg(CN)2. Benzonitrile
(10 μL, 0.0969 mmol) was added to 1000 μL of a 5.03 mM
solution of KAg(CN)2 in water. This mixture was heated to 90
°C while being stirred in a 1 dram screwcap vial capped with a
septum. Aliquots (100 μL) were removed periodically using a
gastight syringe and combined in an NMR tube with 500 μL of
a 10.86 mM NMe4PF6 internal standard solution in D2O. The
progress of the reaction was monitored by observing the
disappearance of the benzonitrile resonance at 7.49 ppm (t, J =
7.87 Hz) and the appearance of the amide resonance at 7.15
ppm (t, J = 7.97 Hz) in the 1H NMR spectrum of the mixture.
pH Studies. The pH of the aqueous Ag−PTA NP solution
was 8. Hydration trials at this pH (with no added catalyst or
ligand) resulted in no reactivity over 72 h.
(9) Shimizu, K.; Kubo, T.; Satsuma, A.; Kamachi, T.; Yoshizawa, K.
ACS Catal. 2012, 2, 2467−2474.
(10) Subramanian, T.; Pitchumani, K. Catal. Commun. 2012, 29,
109−113.
(11) Ishizuka, A.; Nakazaki, Y.; Oshiki, T. Chem. Lett. 2009, 38, 360−
361.
(12) Kim, A. Y.; Bae, H. S.; Park, S.; Park, S.; Park, K. H. Catal. Lett.
2011, 141, 685−690.
(13) Hirano, T.; Uehara, K.; Kamata, K.; Mizuno, N. J. Am. Chem.
Soc. 2012, 134, 6425−6433.
(14) Liu, Y.-M.; He, L.; Wang, M.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N.
ChemSusChem 2012, 5, 1392−1396.
(15) Mitsudome, T.; Mikami, Y.; Mori, H.; Arita, S.; Mizugaki, T.;
Jitsukawa, K.; Kaneda, K. Chem. Commun. 2009, 3258−3260.
(16) Baig, R. B. N.; Varma, R. S. Chem. Commun. 2012, 48, 6220−
6222.
(17) Shimizu, K.; Imaiida, N.; Sawabe, K.; Satsuma, A. Appl. Catal., A
2012, 421−422, 114−120.
(18) Polshettiwar, V.; Varma, R. S. Chem.Eur. J. 2009, 15, 1582−
1586.
(19) Woo, H.; Lee, K.; Park, S.; Park, K. H. Molecules 2014, 19, 699−
712.
(20) Debouttiere, P.-J.; Coppel, Y.; Denicourt-Nowicki, A.; Roucoux,
̀
A.; Chaudret, B.; Philippot, K. Eur. J. Inorg. Chem. 2012, 2012, 1229−
1236.
(21) Hendrich, C.; Bosbach, J.; Stietz, F.; Hubenthal, F.; Vartanyan,
T.; Trager, F. Appl. Phys. B: Lasers Opt. 2003, 76, 869−875.
̈
(22) Lismont, M.; Dreesen, L. Mater. Sci. Eng., C 2012, 32, 1437−
1442.
(23) Hajizadeh, S.; Farhadi, K.; Forough, M.; Sabzi, R. E. Anal.
Methods 2011, 3, 2599−2603.
ASSOCIATED CONTENT
■
(24) Mulfinger, L.; Solomon, S. D.; Bahadory, M.; Jeyarajasingam, A.
V.; Rutkowsky, S. A.; Boritz, C. J. Chem. Educ. 2007, 84, 322.
(25) Solutions in which a <1.1:1 PTA:AgNO3 molar ratio was added
yielded unstable nanoparticles that crashed out of solution after ∼30
min. Solutions in which a >2:1 PTA:AgNO3 molar ratio was added
yielded unstable particles that caused the nanoparticle solution to turn
colorless.
S
* Supporting Information
Experimental procedure for the air-free hydration of ACH and
EDX spectrum of the Ag−PTA nanoparticles. This material is
AUTHOR INFORMATION
■
̀
(26) Debouttiere, P.-J.; Martinez, V.; Philippot, K.; Chaudret, B.
Corresponding Author
Dalton Trans. 2009, 10172−10174.
Author Contributions
T.J.S. and E.L.D. contributed equally to this work.
(27) Son, S. U.; Jang, Y.; Yoon, K. Y.; Kang, E.; Hyeon, T. Nano Lett.
2004, 4, 1147−1151.
(28) Wu, L.; Li, Z.-W.; Zhang, F.; He, Y.-M.; Fan, Q.-H. Adv. Synth.
Catal. 2008, 350, 846−862.
Notes
(29) Madras, G.; McCoy, B. J. J. Chem. Phys. 2002, 117, 8042−8049.
(30) Marqusee, J. A.; Ross, J. J. Chem. Phys. 1983, 79, 373−378.
(31) Knapp, S. M. M.; Sherbow, T. J.; Yelle, R. B.; Zakharov, L. N.;
Juliette, J. J.; Tyler, D. R. Organometallics 2013, 32, 824−834.
(32) Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96−103.
(33) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165−195.
(34) Ghosh, S. K.; Kundu, S.; Pal, T. Bull. Mater. Sci. 2002, 25, 581−
582.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Rohm and Hass Chemical Co. and the National Science
Foundation (CHE-0719171) are acknowledged for the support
of this research.
3103
dx.doi.org/10.1021/cs500830s | ACS Catal. 2014, 4, 3096−3104