Molecular rotors based on styryl dyes
Russ.Chem.Bull., Int.Ed., Vol. 63, No. 8, August, 2014
1733
Table 3. Potential barriers (Ea) and enthalpies of torꢀ
sion* (HTICT) for the planar conformers and the diꢀ
References
pole moments of the planar () and twisted (
forms in the S1 state of dye 1
)
1. R. HumphryꢀBaker, M. Graetzel, R. Steiger, J. Am. Chem.
Soc., 1980, 102, 847.
TICT
2. M. A. Haidekker, W. Akers, D. Lichlyter, T. P. Brady, E. A.
Theodorakis, Sensor Lett., 2005, 3, 42.
3. P. Bosch, F. Catalina, T. Corrales, C. Peinado, Chem. Eur. J.,
2005, 11, 4314.
Bond
Ea
HTICT
kJ mol–1
TICT
Da
4. E. S. Voropai, M. P. Samtsov, K. N. Kaplevski, A. A.
Maskevich, V. I. Stepuro, O. I. Povarova, I. M. Kuznetsova,
K. K. Turoverov, A. L. Fink, V. N. Uverskii, J. Appl. Spect.,
2003, 70, 868.
5. B. M. Uzhinov, V. L. Ivanov, M. Ya. Mel´nikov, Russ. Chem.
Rev., 2011, 80, 1179.
1
2
3
24
22
28
24
–11
28
5.2
5.2
5.2
11.6
11.0
12.6
1
2
3
* Torsion in the fragment Het+—CH—CH—Ar about
bonds 1—3.
6. Y. Shiraishi, T. Inoue, T. Hirai, Langmuir, 2010, 26, 17505.
7. B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling,
B. R. Stranix, Biosensors Bioelectronics, 2003, 18, 465.
8. S. K. Saha, P. Purkayastha, A. B. Das, S. Dhara, J. Photoꢀ
chem. Photobiol. A: Chem., 2008, 199, 179.
9. B. Wandelt, P. Cywinski, G. D. Darling, B. R. Stranix, Bioꢀ
sensors Bioelectronics, 2005, 20, 1728.
10. B. Strehmel, H. Seifert, W. Rettig, J. Phys. Chem. B, 1997,
101, 2232.
11. X. Cao, R. W. Tolbert, J. L. McHale, W. D. Edwards, J. Phys.
Chem. A, 1998, 102, 2739.
12. S. Tazuke, R. K. Guo, R. Hayashi, Macromolecules, 1989,
22, 729.
13. S. Tazuke, R. K. Guo, T. Ikeda, J. Phys. Chem., 1990, 94, 1408.
14. J. Kim, M. Lee, J.ꢀH. Yang, J.ꢀH. Choy, J. Phys. Chem. A,
2000, 104, 1388.
15. S. P. Gromov, O. A. Fedorova, M. V. Alfimov, S. I. Druzhinin,
M. V. Rusalov, B. M. Uzhinov, Russ. Chem. Bull. (Int. Ed.),
1995, 44, 1922 [Izv. Akad. Nauk, Ser. Khim., 1995, 2003].
16. S. I. Druzhinin, M. V. Rusalov, B. M. Uzhinov, M. V. Alfiꢀ
mov, S. P. Gromov, O. A. Fedorova, Proc. Ind. Acad. Sci.:
Chem. Sci., 1995, 107, 721.
(see Fig. 3, a, c). Twisted forms correspond to heights of
potential barriers (Table 3). The turn about bond 2 in the
indicated fragment is characterized by the potential barrier
at 130 and a shallow energy minimum corresponding to
the twisted rotamer (see Fig. 3, b, Table 3). The rotation
about bond 2 in molecules of the styryl dyes results in
E—Zꢀisomerization.26
The absence of photoisomerization of dyes 1—3 can
be explained by the efficient conversion S1 T1 in the
twisted rotamer.27 In the T1 state, the molecule is adiaꢀ
batically transformed into the planar form correspondꢀ
ing to the energy minimum and then it is transꢀ
formed nonradiatively into the initial Eꢀisomer (see
Fig. 3, b). Taking into account solvation decreases the
energy minimum of the S1 state of dye 1 by 8 kJ mol–1
compared to heptane. The increase in f for compounds 2
and 3 in weakly polar Et2O compared to ethyl acetate,
butyronitrile, and ethanol (see Table 1) confirms the inꢀ
fluence of solvation on the rate constant of twisted state
formation.
17. L. G. Kuz´mina, A. I. Vedernikov, N. A. Lobova, S. K.
Sazonov, S. S. Basok, J. A. K. Howard, S. P. Gromov, Russ.
Chem. Bull. (Int. Ed.), 2009, 58, 1192 [Izv. Akad. Nauk, Ser.
Khim., 2009, 1161].
Thus, the quantum chemical calculations showed that
in the nonpolar solvent the molecular fragments of the
studied styryl dyes rotate mainly about the central ethylꢀ
ene bond. The rotation barriers about the ordinary bonds
of the ethylene fragment decrease in polar solvents.
The substantial dependences of the spectralꢀ
luminescence characteristics of the styryl dyes
18. A. Gazit, N. Osherov, I. Posner, P. Yaish, E. Poradosu,
C. Gilon, A. Levitzki, J. Med. Chem., 1991, 34, 1896.
19. A. I. Vedernikov, L. G. Kuz´mina, S. K. Sazonov, N. A. Loꢀ
bova, P. S. Loginov, A. V. Churakov, Yu. A. Strelenko, J. A.
K. Howard, M. V. Alf imov, S. P. Gromov, Russ. Chem. Bull.
(Int. Ed.), 2007, 56, 1860 [Izv. Akad. Nauk,Ser. Khim., 2007, 1797].
20. W. H. Melhuish, J. Phys. Chem., 1961, 65, 229.
21. K. Rechthaler, G. Köhler, Chem. Phys., 1994, 189, 99.
22. F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa, J. Luminesc., 1989,
44, 105.
23. A. A. Granovsky, Firefly Quantum Chemistry Package, Verꢀ
24. A. A. Granovsky, J. Chem. Phys., 2011, 134, 214113.
25. M. K. Kuimova, M. Balaz, H. L. Anderson, P. R. Ogilby,
J. Am. Chem. Soc., 2009, 131, 7948.
R1—Het+—CH=CH—C6H4—NR1R2ClO4 on the visꢀ
–
cosity of the medium reflect rotations of the molecular
fragments in them and make it possible to consider these
compounds as molecular rotors. According to the quanꢀ
tum chemical calculations, for the barrier photorelaxation
of cations of the dyes, twisting occurs about the bonds of
the ethylene bridge to form weakly fluorescent TICT states.
The dependences of the efficiency of the formation of the
TICT states of the styryl dyes on the temperature, viscosiꢀ
ty, and polarity of the medium were observed.
26. G. D. Titskii, T. S. Gaidash, V. N. Matvienko, A. A.
Matveev, Theor. Exp. Chem., 2002, 38, 179.
27. L. S. Atabekyan, N. A. Lobova, A. I. Vedernikov, S. P. Groꢀ
mov, A. K. Chibisov, High Energy Chem. (Engl. Transl.),
2012, 46, 100 [Khim. Vys. Energ., 2012, 46, 142].
This work was financially supported by the Rusꢀ
sian Foundation for Basic Research (Project Nos 11ꢀ03ꢀ
01026 and 13ꢀ03ꢀ12423) and the Russian Academy of
Sciences.
Received January 21, 2014;
in revised form June 2, 2014