Paper
NJC
Table 4 Hydration of benzonitrile to benzamide by Ag–PAAS at different
pH values
7 P. Crochet and V. Cadierno, Dalton Trans., 2014, 43,
12447–12462.
8 M. L. Buil, V. Cadierno, M. A. Esteruelas, J. Gimeno, J. Herrero,
Entry
pHa
TOFb (hꢀ1
)
˜
S. Izquierdo and E. Onate, Organometallics, 2012, 31,
1
2
3
4
11.9
10.0
9.0
3.96
3.33
1.30
0.27
6861–6867.
´
9 R. S. Ramon, N. Marion and S. P. Nolan, Chem. – Eur. J.,
7.6
2009, 15, 8695–8697.
a
´
´
´
10 E. Tomas-Mendivil, R. Garcıa-Alvarez, C. Vidal, P. Crochet
and V. Cadierno, ACS Catal., 2014, 4, 1901–1910.
11 E. L. Downs and D. R. Tyler, Coord. Chem. Rev., 2014, 280,
28–37.
The pHs of reaction solutions were adjusted with triethylamine or
b
acetic acid. Turnover frequencies ((mol benzamide/mol Ag)/time)
were calculated at 70% conversion.
acceleration effect from the OHꢀ reached saturation and some
other unknown rate-limiting factors were present. Studies to
elucidate the detailed mechanism of the catalytic action of the
Ag–PAAS system are still in progress in our lab.
12 S. Kumar and P. Das, New J. Chem., 2013, 37, 2987–2990.
13 H. Woo, K. Lee, S. Park and K. Park, Molecules, 2014, 19,
699–712.
14 A. Y. Kim, H. Bae, S. Park, S. Park and K. Park, Catal. Lett.,
2011, 141, 685–690.
15 R. B. N. Baig, M. N. Nadagouda and R. S. Varma, Green
Chem., 2014, 16, 2122–2127.
4 Conclusions
16 K.-i. Shimizu, T. Kubo, A. Satsuma, T. Kamachi and
K. Yoshizawa, ACS Catal., 2012, 2, 2467–2474.
17 Y.-M. Liu, L. He, M.-M. Wang, Y. Cao, H.-Y. He and K.-N. Fan,
ChemSusChem, 2012, 5, 1392–1396.
18 T. Subramanian and K. Pitchumani, Catal. Commun., 2012,
29, 109–113.
19 C. Battilocchio, J. M. Hawkins and S. V. Ley, Org. Lett., 2014,
16, 1060–1063.
20 M. Tamura, A. Satsuma and K.-i. Shimizu, Catal. Sci. Technol.,
2013, 3, 1386–1393.
21 Y. Gangarajula and B. Gopal, Chem. Lett., 2012, 41, 101–103.
22 K. Yamaguchi, Y. Wang, H. Kobayashi and N. Mizuno,
Chem. Lett., 2012, 41, 574–576.
23 P. Christopher and S. Linic, ChemCatChem, 2010, 2, 78–83.
24 Z.-J. Jiang, C.-Y. Liu and L.-W. Sun, J. Phys. Chem. B, 2005,
109, 1730–1735.
In summary, a novel quasi-homogeneous Ag NP-based catalyst
was developed using PAAS as a stabilizer. The Ag–PAAS catalyst
displayed high activity for the selective hydration of nitriles to
amides in an aqueous medium under relatively mild condi-
tions, especially for the hydration of heteroaromatic nitriles
(a maximum turnover frequency of 1000 hꢀ1 was obtained for
the hydration of 2-cyanopyridine). Moreover, the pH response
of PAAS afforded a reversible precipitation–redispersion switch of
Ag NPs, allowing efficient recovery and recycling of the catalyst.
The catalyst could be reused for eight runs without significant loss
(o5%) in its initial catalytic activity, due to the extremely low Ag
leaching during recovery handling and the high stability of Ag NPs
during catalysis. The Ag–PAAS catalyst here combines the advan-
tages of the high efficiency of a quasi-homogeneous catalyst and
the easy recovery and reuse of a heterogeneous catalyst.
25 R. Xu, D. Wang, J. Zhang and Y. Li, Chem. – Asian J., 2006, 1,
888–893.
Acknowledgements
26 J. Davarpanah and A. R. Kiasat, Catal. Commun., 2013, 41, 6–11.
27 T. J. Sherbow, E. L. Downs, R. I. Sayler, J. J. Razink,
J. J. Juliette and D. R. Tyler, ACS Catal., 2014, 4, 3096–3104.
28 K.-i. Shimizu, N. Imaiida, K. Sawabe and A. Satsuma, Appl.
Catal., A, 2012, 421–422, 114–120.
This work was supported by the National Natural Science Founda-
tion of China (No. 51573209), the Hunan Provincial Innovation
Foundation for Graduates (CX2014B049) and the Free Exploration
Project for Undergraduates (ZY2015613).
29 K. Kawai, H. Kawakami, T. Narushima and T. Yonezawa,
J. Nanopart. Res., 2015, 17, 1–9, DOI: 10.1007/s11051-014-
2816-1.
Notes and references
1 R. Garcia-Alvarez, P. Crochet and V. Cadierno, Green Chem., 30 N. Salam, S. K. Kundu, R. A. Molla, P. Mondal, A. Bhaumik
2013, 15, 46–66.
and S. M. Islam, RSC Adv., 2014, 4, 47593–47604.
2 T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, 31 K. Ghosh, M. A. Iqubal, R. A. Molla, A. Mishra, Kamaluddin
K. Jitsukawa and K. Kaneda, Chem. Commun., 2009, 3258–3260.
and S. M. Islam, Catal. Sci. Technol., 2015, 5, 1606–1622.
3 N. K. Thallaj, P.-Y. Orain, A. Thibon, M. Sandroni, R. Welter 32 Y. Yuan, N. Yan and P. J. Dyson, Inorg. Chem., 2011, 50,
and D. Mandon, Inorg. Chem., 2014, 53, 7824–7836.
11069–11074.
4 I. Ferrer, J. Rich, X. Fontrodona, M. Rodriguez and I. Romero, 33 X. Wu, X. Chen, H. Guan, X. Wang and L. Chen, Catal.
Dalton Trans., 2013, 42, 13461–13469. Commun., 2014, 51, 29–32.
5 E. Tomas-Mendivil, F. J. Suarez, J. Diez and V. Cadierno, 34 S. Qi, X. Shen, Z. Lin, G. Tian, D. Wu and R. Jin, Nanoscale,
Chem. Commun., 2014, 50, 9661–9664. 2013, 5, 12132–12135.
6 D. Kumar, C. A. Masitas, T. N. Nguyen and C. A. Grapperhaus, 35 J. Li, Y.-c. Fang, G.-w. He and H.-f. Li, J. Cent. South Univ.,
Chem. Commun., 2013, 49, 294–296.
2013, 20, 1475–1481.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015