Angewandte
Communications
Chemie
[9] N. Minowa, T. Mukaiyama, Bull. Chem. Soc. Jpn. 1987, 60, 3697 –
3704.
leading to products of carbinol C-alkylation. This method
enables direct conversion of primary alcohols, including
simple aliphatic alcohols, into secondary homopropargyl
alcohols using inexpensive, commercial reagents. More
broadly, these studies further demonstrate how the native
reducing features of alcohol reactants can mediate reductive
carbonyl addition, thus bypassing preformed carbanions and
discrete redox reactions.
[10] a) Allenyl tin reagents: J. A. Marshall, X.-J. Wang, J. Org. Chem.
1991, 56, 3211 – 3213; b) allenyl silicon reagents: J. A. Marshall,
K. Maxson, J. Org. Chem. 2000, 65, 630 – 633; c) R. A. Brawn,
J. S. Panek, Org. Lett. 2007, 9, 2689 – 2692; d) allenyl boron
reagents: Y. Matsumoto, M. Naito, Y. Uozumi, T. Hayashi, J.
Chem. Soc. Chem. Commun. 1993, 1468 – 1469; e) allenyl zinc
reagents: J. A. Marshall, N. D. Adams, J. Org. Chem. 1998, 63,
3812 – 3813; f) J. A. Marshall, N. D. Adams, J. Org. Chem. 1999,
64, 5201 – 5204; g) J. P. Marino, M. S. McClure, D. P. Holub, J. V.
Comasseto, F. C. Tucci, J. Am. Chem. Soc. 2002, 124, 1664 – 1668.
[11] Metal/Lewis base catalyzed enantioselective propargylation
using allenyl tin reagents: a) G. E. Keck, D. Krishnamurthy, X.
Chen, Tetrahedron Lett. 1994, 35, 8323 – 8324; b) C.-M. Yu, S.-K.
Yoon, H.-S. Choi, K. Baek, Chem. Commun. 1997, 763 – 764;
c) C.-M. Yu, H.-S. Choi, S.-K. Yoon, W.-H. Jung, Synlett 1997,
889 – 890; d) C.-M. Yu, S.-K. Yoon, K. Baek, J.-Y. Lee, Angew.
Chem. Int. Ed. 1998, 37, 2392 – 2395; Angew. Chem. 1998, 110,
2504 – 2506; e) S. Konishi, H. Hanawa, K. Maruoka, Tetrahe-
dron: Asymmetry 2003, 14, 1603 – 1605; f) S. E. Denmark, T.
Wynn, J. Am. Chem. Soc. 2001, 123, 6199 – 6200.
Acknowledgments
Acknowledgement is made to the Robert A. Welch Founda-
tion (F-0038) and the NIH (RO1-GM069445) for partial
support of this research.
Keywords: alcohols · hydrogenation · reaction mechanisms ·
rhodium · synthetic methods
[12] Metal/Lewis base catalyzed enantioselective propargylation
using allenyl silicon reagents: a) K. Iseki, Y. Kuroki, Y.
Kobayashi, Tetrahedron: Asymmetry 1998, 9, 2889 – 2894;
b) D. A. Evans, Z. K. Sweeney, T. Rovis, J. S. Tedrow, J. Am.
Chem. Soc. 2001, 123, 12095 – 12096; c) M. Nakajima, M. Saito,
S. Hashimoto, Tetrahedron: Asymmetry 2002, 13, 2449 – 2452;
d) J. Chen, B. Captain, N. Takenaka, Org. Lett. 2011, 13, 1654 –
1657.
[13] Copper-catalyzed enantioselective propargylation using allenyl/
propargyl boron reagents: a) S.-L. Shi, L.-W. Xu, K. Oisaki, M.
Kanai, M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 6638 – 6639;
b) D. R. Fandrick, K. R. Fandrick, J. T. Reeves, Z. Tan, W. Tang,
A. G. Capacci, S. Rodriguez, J. J. Song, H. Lee, N. K. Yee, C. H.
Senanayake, J. Am. Chem. Soc. 2010, 132, 7600 – 7601; c) K. R.
Fandrick, D. R. Fandrick, J. T. Reeves, J. Gao, S. Ma, W. Li, H.
Lee, N. Grinberg, B. Lu, C. H. Senanayake, J. Am. Chem. Soc.
2011, 133, 10332 – 10335; d) K. R. Fandrick, J. Ogikubo, D. R.
Fandrick, N. D. Patel, J. Saha, H. Lee, S. Ma, N. Grinberg, C. A.
Busacca, C. H. Senanayake, Org. Lett. 2013, 15, 1214 – 1217;
e) X.-F. Wei, Y. Shimizu, M. Kanai, ACS Cent. Sci. 2016, 2, 21 –
26.
[14] Hydrogen-bond-catalyzed enantioselective propargylation using
allenyl boron reagents: a) D. S. Barnett, S. E. Schaus, Org. Lett.
2011, 13, 4020 – 4023; b) P. Jain, H. Wang, K. N. Houk, J. C.
Antilla, Angew. Chem. Int. Ed. 2012, 51, 1391 – 1394; Angew.
Chem. 2012, 124, 1420 – 1423; c) L. R. Reddy, Org. Lett. 2012, 14,
1142 – 1145.
[15] Catalytic enantioselective propargylation by a Nozaki–Hiyama–
Kishi reaction: a) M. Bandini, P. G. Cozzi, A. Umani-Ronchi,
Polyhedron 2000, 19, 537 – 539; b) M. Bandini, P. G. Cozzi, P.
Melchiorre, R. Tino, A. Umani-Ronchi, Tetrahedron: Asymme-
try 2001, 12, 1063 – 1069; c) M. Inoue, M. Nakada, Org. Lett.
2004, 6, 2977 – 2980; d) M. Naodovic, G. Xia, H. Yamamoto, Org.
Lett. 2008, 10, 4053 – 4055; e) S. Liu, J. T. Kim, C.-G. Dong, Y.
Kishi, Org. Lett. 2009, 11, 4520 – 4523; f) K. C. Harper, M. S.
Sigman, Science 2011, 333, 1875 – 1878.
[1] J. M. Ketcham, I. Shin, T. P. Montgomery, M. J. Krische, Angew.
Chem. Int. Ed. 2014, 53, 9142 – 9150; Angew. Chem. 2014, 126,
9294 – 9302.
[2] a) I. S. Kim, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc. 2008,
130, 14891 – 14899; b) I. S. Kim, S. B. Han, M. J. Krische, J. Am.
Chem. Soc. 2009, 131, 2514 – 2520; c) Y. J. Zhang, J. H. Yang,
S. H. Kim, M. J. Krische, J. Am. Chem. Soc. 2010, 132, 4562 –
4563; d) A. Hassan, J. R. Zbieg, M. J. Krische, Angew. Chem. Int.
Ed. 2011, 50, 3493 – 3496; Angew. Chem. 2011, 123, 3555 – 3558;
e) T. P. Montgomery, A. Hassan, B. Y. Park, M. J. Krische, J. Am.
Chem. Soc. 2012, 134, 11100 – 11103; f) J. Feng, V. J. Garza, M. J.
Krische, J. Am. Chem. Soc. 2014, 136, 8911 – 8914; g) G. Wang, J.
Franke, C. Q. Ngo, M. J. Krische, J. Am. Chem. Soc. 2015, 137,
7915 – 7920.
[3] T. Suzuki, Chem. Rev. 2011, 111, 1825 – 1845.
[4] S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1995, 117, 7562 – 7563.
[5] a) H. Imai, T. Nishiguchi, K. Fukuzumi, J. Org. Chem. 1974, 39,
1622 – 1627; b) K. Murata, T. Ikariya, J. Org. Chem. 1999, 64,
2186 – 2187; c) T. Ikariya, A. J. Blacker, Acc. Chem. Res. 2007,
40, 1300 – 1308; d) A. B. Zaitsev, H. Adolfsson, Org. Lett. 2006,
8, 5129 – 5132; e) K. Ahlford, J. Ekstrçm, A. B. Zaitsev, P.
Ryberg, L. Eriksson, H. Adolfsson, Chem. Eur. J. 2009, 15,
11197 – 11209.
[6] a) J. Li, G. Schreckenbach, T. Ziegler, J. Am. Chem. Soc. 1995,
117, 486 – 494. This assertion is consistent with the energy of
infrared radiation absorbed by isostructural carbonyl complexes
of iridium and rhodium, [(Ph3P)2M(Cl)(CO)], M = Ir, nco
=
1965 cmÀ1; M = Rh, nco = 1980 cmÀ1; b) L. Vaska, J. Peone,
Chem. Commun. 1971, 418 – 419; c) A. Haynes, J. McNish,
J. M. Pearson, J. Organomet. Chem. 1998, 551, 339 – 347; d) D. B.
Grotjahn, L. S. B. Collins, M. Wolpert, G. A. Bikzhanova, H. C.
Lo, D. Combs, J. L. Hubbard, J. Am. Chem. Soc. 2001, 123, 8260 –
8270.
[16] a) R. L. Patman, V. M. Williams, J. F. Bower, M. J. Krische,
Angew. Chem. Int. Ed. 2008, 47, 5220 – 5223; Angew. Chem.
2008, 120, 5298 – 5301; b) L. M. Geary, S. K. Woo, J. C. Leung,
M. J. Krische, Angew. Chem. Int. Ed. 2012, 51, 2972 – 2976;
Angew. Chem. 2012, 124, 3026 – 3030; c) S. K. Woo, L. M. Geary,
M. J. Krische, Angew. Chem. Int. Ed. 2012, 51, 7830 – 7834;
Angew. Chem. 2012, 124, 7950 – 7954; d) L. M. Geary, J. C.
Leung, M. J. Krische, Chem. Eur. J. 2012, 18, 16823 – 16827.
[7] a) C.-H. Ding, X.-L. Lou, Chem. Rev. 2011, 111, 1914 – 1937;
b) H. M. Wisniewska, E. R. Jarvo, J. Org. Chem. 2013, 78,
11629 – 11636.
[8] a) R. Haruta, M. Ishiguro, N. Ikeda, H. Yamamoto, J. Am. Chem.
Soc. 1982, 104, 7667 – 7669; b) E. J. Corey, C.-M. Yu, D. H. Lee, J.
Am. Chem. Soc. 1990, 112, 878 – 879; c) C. Lai, J. A. Soderquist,
Org. Lett. 2005, 7, 799 – 802; d) E. Hernandez, C. H. Burgos, E.
Alicea, J. A. Soderquist, Org. Lett. 2006, 8, 4089 – 4091.
4
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2016, 55, 1 – 6
These are not the final page numbers!